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This handbook provides application notes and briefs for engineers and
engineering managers who seek practical ways to reduce design costs,
improve design quality, and shorten design cycles. Design guidelines and
tips on how to use Altera’s FLEX 8000 devices are also provided. For
complete information on device characteristics, refer to the current
FLEX 8000 Programmable Logic Device Family Data Sheet. For information on
software characteristics and specifications, refer to the current
MAX+PLUS II Programmable Logic Development System & Software Data
Sheet. For information on Classic, MAX 5000, and MAX 7000 devices, refer
to the current Altera data book.

For immediate assistance on technical questions, call:
Altera Applications Hotline
(800) 800-EPLD
For information on product availability, pricing, and order status, contact
your local Altera representative or distributor listed in Sales Offices,

Distributors & Representatives in this handbook.

If you have questions that cannot be answered by the local representative
or distributor, contact:

Altera Marketing

Tel: (408) 894-7000
Fax: (408) 248-6924

Altera Corporation
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The PLD Market

Programmable logic devices (PLDs) are digital, user-configurable integrated
circuits (ICs) used to implement custom logic functions. PLDs can
implement any Boolean expression or registered function using their built-
in logic structures. In contrast, off-the-shelf logic ICs, such as TTL devices,
provide a specific logic function and cannot be modified to meet individual
circuit design requirements. PLDs were once viewed as an alternative to
discrete logic and custom or semi-custom devices such as ASICs. In recent
years, however, PLDs have become the preferred choice. As PLD costs
have decreased through high-volume manufacturing and the use of
aggressive process technologies, PLD manufacturers have been able to
offer devices with higher integration, higher performance, and lower cost
per function than most discrete and custom devices.

Programmable logic encompasses all digital logic circuits configured by
the end-user, including simple, low-density, 20-pin PAL/GAL devices,
Field Programmable Gate Arrays (FPGAs), and Complex PLDs (CPLDs).
PLDs are offered in different architectures and a variety of memory
technologies for configuring the devices. Figure 1 shows the relative position
of Altera general-purpose devices (FLEX 8000, MAX 7000, MAX 5000/
EPS464, and Classic) in the CMOS programmable logic device market.

CPLDs and FPGAs have different interconnect structures. The segmented
interconnect structure of FPGAs uses varying lengths of metal lines

Figure 1. Altera General-Purpose Logic Devices
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Advantages of
Altera PLDs

connected by pass transistors to connect logic cells. In contrast, the
continuous interconnect structure of CPLDs uses metal lines that are all of
the same length to provide logic cell-to-logic cell connectivity. The
continuous interconnect structure eliminates the timing variability
associated with a segmented interconnect structure, and provides fast,
fixed delay paths between logic cells. This structure makes it easier to
implement a design, and thus shortens the development cycle.

Designers generally develop a logic circuit with one of three distinctly
different implementation options: discrete logic (TTL, CMOS, etc.), custom
or semi-custom devices (ASICs), or PLDs. The best option is one that can
meet the largest number of design requirements. Table 1 lists a number of
important requirements and rates the three options according to their
effectiveness in meeting these requirements.

Table 1. Device Options Rating
Requirement PLD Discrete Custom
Logic Device
Speed [} o [ )
Density ® O ®
Cost [ ] O e (1)
Development time (] ) ®)
Prototyping & simulation time [ ) o o)
Manufacturing time ® » ®)
Ease of use ® ) o
Future modification ([ ] ) o)
Inventory risk (] [ ] o
Development tool support (] o °

Notes:

(1) Cost-effective only in high-volume production
@®  Very effective

D  Adequate

O Poor

Altera PLDs not only offer the general benefits of PLD technology, but
other advantages based on innovative architectures, aggressive
technologies, and the MAX+PLUS II programmable logic development
environment. These advantages include:

Higher performance

High-density logic integration

Greater cost-effectiveness

Shorter development cycles with MAX+PLUS II software

ocoood
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Higher Performance

Performance is a function of process and architecture. Altera devices are
manufactured on state-of-the-art CMOS processes, which offer the shortest
possible delays. In addition, the devices’ continuous interconnect structures
provide fast, consistent signal delays throughout the device.

=
=
=
=]
=
=
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=
=)
S

High-Density Logic Integration

Designers often seek the highest possible logic integration for their designs,
usually to reduce board space and cost. Also, existing designs often undergo
secondary development cycles that aim to reduce cost by integrating more
logic into fewer devices. In both cases, PLDs with high logic integration
capability offer an excellent solution. Altera devices—which range in
density from 300 to 50,000 usable gates—can easily integrate existing logic,
whether it be a small or a large number of discrete logic devices, PLDs,
FPGAs, or even custom devices. This high integration capability provides
~ higher performance and reliability, as well as lower system cost.

Greater Cost-Effectiveness

Altera continually strives to refine product development and manufacturing
processes. The expertise accumulated over more than a decade of leadership
has made both process technologies and the manufacturing flow highly
efficient, and has enabled Altera to offer the most cost-effective, highest-
performance programmable logic available.

Shorter Development Cycles with MAX+PLUS Il Software

Time is the most precious resource for many design engineers. Large sums
of money are wasted on projects that are not completed on schedule and
therefore miss a window of opportunity. Consequently, the shorter the
development cycle, the better. Altera’s fast, intuitive, and easy-to-use
MAX+PLUS II software can shorten the development cycle considerably.
Design entry, processing, verification, and device programming together
take only a few hours, potentially allowing several complete design
iterations in one day. Figure 2 illustrates a typical PLD development cycle
in the MAX+PLUS II development environment. Times shown are
representative of a relatively sophisticated 10,000-gate logic design.

Figure 2. Development Cycle for Altera Devices

Design Design Design Design Device System
Concept Entry Processing Simulation | | Programming Test
— > ————— > >
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Altera Device

Altera offers four families of general-purpose PLDs: FLEX 8000, MAX 7000,
MAX 5000/EPS464, and Classic. The FLEX 8000 family architecture uses

Families look-up tables (LUTSs) to implement logic functions, whereas the Multiple
Array Matrix (MAX) and Classic families use a programmable-AND/ fixed-
OR product-term architecture. Each architecture offers distinct speed and
utilization advantages for implementing a particular application. See
Table 2.

Table 2. Altera Device Architecture & Technology
Device Family Logic Cell Interconnect Technology
Structure Structure
FLEX 8000 Look-Up Table Continuous SRAM
MAX 7000 Sum-of-Products Continuous EEPROM
MAX 5000/EPS464 | Sum-of-Products Continuous EPROM
Classic Sum-of-Products Continuous EPROM
The following descriptions summarize the key features and benefits of
Altera’s general-purpose, programmable logic device families. Figure 3
compares the pin count and density of each device family.
Figure 3. Pin Count & Density in Altera Device Families
304
208
Pins
100
68
Classic
900 3,800 5,000 24,000
Usable Gates
Page 6 Altera Corporation J
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FLEX 8000 Family

The FLEX 8000 family is ideal for applications that require a large number
of registers and I/O pins. Devices in the family range in density from 2,500
to 50,000 usable gates, with 282 to 4,752 registers, and 78 to 360 user 1/O
pins. These features and the high-performance, predictable interconnect
scheme make these devices as easy to use as product-term-based devices.
In addition, the SRAM-based FLEX 8000 devices require low standby
power and are in-circuit reconfigurable, making them ideal for such
applications as PC add-on cards, battery-powered instruments, and multi-
purpose telecommunication cards.

MAX 7000 Family

The MAX 7000 family is the fastest high-density programmable logic
family in the industry. It ranges in density from 600 to 5,000 usable gates,
with 32 to 256 macrocells, and 36 to 164 user I/O pins. These devices offer
combinatorial propagation delays as low as 7.5 ns and 16-bit counter
frequencies of 125 MHz. Moreover, they provide very fast input register
setup times, multiple system Clocks, and a programmable speed/power
control. The slew rate for I/O pins can be controlled, providing an extra
level of switching noise control. The EEPROM-based MAX 7000 devices
are non-volatile and electrically erasable.

MAX 5000/EPS464 Family

The MAX 5000/EPS464 family provides a comprehensive, cost-effective
solution for designs that require a high level of combinatorial logic. These
devices provide logic densities ranging from 300 to 3,800 usable gates and
pin counts ranging from 20 to 100 pins. Because of the maturity of the
devices and Altera’s commitment to migrate existing families to newer,
more aggressive technologies, MAX 5000/EPS464 devices offer excellent
cost-per-macrocell values that compare favorably to ASICs and gate arrays
for high-volume production. The EPROM-based MAX 5000/EPS464 devices
are non-volatile and erasable.

Classic Family

The Classic family is Altera’s original family of devices. It features densities
up to 900 usable gates and pin counts up to 68 pins. Composed of single
arrays of globally interconnected logic, the industry-standard Classic family
offers a low-cost solution for low-density applications. This family offers a
unique “zero-power” mode, which allows the devices to draw only
microamps of current at standby, making them ideal for low-power
applications. The Classic family is based on EPROM technology.

Altera Corporation
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Figure 4 summarizes the architectures of Altera devices and illustrates
how the interconnect structure has evolved to maintain high performance,
even at the highest densities.

Figure 4. Altera Architecture Evolution

Classic MAX 5000 MAX 7000 FLEX 8000

Global
Interconn

Programmable Enhanced FastTrack
ect Interconnect Programmable Interconnect
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Development
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All Altera device families use CMOS process technology, which provides
lower power dissipation and greater reliability than bipolar technology.
As part of Altera’s commitment to continual improvement, Altera transfers
products to advanced processes as soon as these technologies become
viable and can support reliable manufacturing. This transfer generally
reduces manufacturing costs and provides performance enhancements,
which translate into faster, cost-effective devices.

For applications that are targeted for high-volume production, Altera
offers Mask-Programmed Logic Devices (MPLDs) as low-cost alternatives
to high-density PLDs. MPLDs, which are masked versions of programmable
logic devices, offer a unique turn-key approach that eliminates the
engineering-intensive tasks required for custom and semi-custom devices.
The quick turn-around for MPLD conversion guarantees fast time-to-
market.

Altera achieves maximum device performance and density not only with
advanced processes and innovative logic architectures, but also through
state-of-the-art design tools. The MAX+PLUS II programmable logic
development software provides an architecture-independent design
environment that supports designs for Altera’s general-purpose PLD
families, ensuring easy design entry, quick processing, and uncomplicated
device programming. See Figure 5.

Using MAX+PLUSI, designers no longer need to master the complexities
of device architectures. MAX+PLUS II translates their design—created
with familiar design entry tools, such as schematic capture or a high-level
behavioral language—into the format required by the target architecture.

Page 8
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Figure 5. MAX+PLUS Il Design Environment
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Since intimate architectural knowledge is built into Altera development
tools, it is not necessary for designers to manually optimize their design,
and can therefore complete their designs much more rapidly. With
MAX+PLUS I, users can take a logic circuit from design entry to device
programming in a matter of hours. Design processing is typically completed
in minutes, allowing several complete design iterations in a single day.

Design Entry, Processing,Verification & Device Programming

MAX+PLUS I offers a full spectrum of logic design capabilities. Designers
are free to combine text, graphic, and waveform design entry methods
while creating hierarchical single- or multi-device designs. The
MAX+PLUS II Compiler performs minimization and logic synthesis, fits
the design into one or more devices, and generates programming data.
Design verification with functional and timing simulation and delay
prediction for speed-critical paths are available, as well as multi-device
simulation across multiple device families. Altera and a number of
programming hardware manufacturers offer hardware for programming
the devices.
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Conclusion

Access to Various Platforms & Other CAE Tools

Altera is committed to supporting the logic development environments
that are most familiar to circuit designers. MAX+PLUS II interfaces to a
wide variety of other CAE tools—provided by companies such as Cadence,
Mentor Graphics, OrCAD, Synopsys, and Viewlogic—via EDIF, LPM,
Verilog HDL, and VHDL. The MAX+PLUS II Compiler runs on PC and
various workstation platforms, making MAX+PLUS II the industry’s only
platform-independent, architecture-independent programmable logic
design environment. The ACCESS alliance, which Altera has formed with
industry-leading CAE tool vendors, ensures smooth interfaces between
Altera products and the products of the ACCESS partners, as well as
timely support of Altera devices with these tools.

The advanced architectures and processing technologies used in Altera
devices provide the greatest performance, highest density, and greatest
flexibility available in the PLD market. Regardless of an application’s
requirements, Altera devices provide an efficient solution with high levels
of integration, high I/O capabilities, and the fastest speeds available.

The sophisticated, highly integrated MAX+PLUS II development
environment completes Altera’s total solution. MAX+PLUS 1II gives
designers the ability to take full advantage of all features offered in Altera
devices. MAX+PLUS 1I can target a project to any device family, thus
offering architecture-independent design capabilities to designers,
regardless of their preferred design flow. Together, Altera devices and
Altera development tools are the logical choice for all designs that require
fast development cycles and cost-effective components.

Page 10
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Altera’s technical support team includes over 50 Applications Engineers
dedicated to promptly answering customers’ technical questions.
Applications Engineers are located at Altera’s headquarters in San Jose,
California, and at locations around the world.

In addition, Altera Applications offers the following services:

Training courses

Electronic bulletin board service
Applications publications
Design evaluations

Technical support hotline
On-site support

oo DD

Altera provides a variety of training courses that help customers efficiently
use Altera products. With these courses, customers can fine-tune their
skills with Altera development tools or simply learn more about Altera
products. Courses include device architectures, MAX+PLUS II
demonstrations, and how-to sessions. All training courses can be tailored
to fit customer needs.

Training courses are held at Altera in San Jose; in some cases, they can be
held at customer sites. For more information, contact Altera Marketing at
(408) 894-7000.

Altera maintains a 24-hour electronic bulletin board service (BBS) for
instant access to the latest Altera product information. On-line versions of
Altera application notes and briefs, recent quarterly newsletters, and
software utility programs are available from the BBS. The BBS can also be
used to transfer design files to and from the Altera Applications department
for technical support.

The telephone number for the BBS is (408) 954-0104. To connect to the BBS
via modem, the following equipment and configuration is required:

a  Up to 14,400 baud rate
1 Bell Standard 212A or CCIT standard or compatible modem
O 8 data bits, 1 stop bit, no parity

| Altera Corporation
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Applications
Publications

Design

Evaluations

Technical
Support Hotline

The following file transfer protocols are supported:

ASCII (Non-Binary)

Xmodem (Checksum)

Xmodem (CRC)

1K-XModem

Ymodem (Batch U/L and D/L)
Zmodem (Batch U/L and D/L)
Kermit (MS-DOS Columbia Univ)

ooLoodoo

Altera Applications produces technical application notes and briefs to help
customers select and use programmable logic. All technical literature
currently available from Altera is listed in the Applications quarterly
customer newsletter, News & Views. News & Views also includes technical
articles written by Altera Applications Engineers, a question and answer
section that addresses many commonly asked questions, and the latest
information on Altera products. All registered users of Altera products
receive News & Views each quarter.

Altera Applications Engineers will evaluate customer designs and
recommend the most efficient design methods and the appropriate Altera
device(s) for the customer. Applications Engineers also provide estimates
on device performance. For more information, customers can contact their
local Altera sales office.

From 7:30 a.m. to 5:00 p.m. Pacific Time, customers can talk directly to an
Applications Engineer by calling (800) 800-EPLD. Questions are handled
promptly and completely, ensuring that the design process keeps moving
forward. Customers outside of the United States can contact their local
Altera distributor or sales office, or send a fax to

(408) 954-0348. R

Field Applications Engineers will provide technical support at the customer
site. They will evaluate customer designs, demonstrate MAX+PLUS 1II
software, and provide on-site training. Customers can contact their local
Field Applications Engineer by calling their local Altera sales office.

Page 12
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Altera FLEX 8000 devices are featured on GET Engineering Corporation’s NTDS parallel
interface adapters for VME bus systems. These systems allow users to interface parallel
NTDS channels with a wide variety of VME-based computer systems.
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Introduction Altera’s Flexible Logic Element MatriX (FLEX) programmable logic
combines the high register counts of FPGAs with the fast, predictable
interconnect of EPLDs, providing up to 16,000 usable gates, 1,500 flipflops,
and 304 pins. The SRAM-based FLEX 8000 family features low standby
power and in-circuit reconfigurability, making it ideal for applications
such as PC add-on cards, battery-powered instruments, and multi-purpose
telecommunication systems.

This application note describes the FLEX 8000 architecture in detail. For
device specifications, refer to the current FLEX 8000 Programmable Logic
Device Family Data Sheet. The following topics are covered in this application

<
o —
S 3
-
5
o 2
-
@

O  General description

1 Functional description
3  Logic element

3 Logic Array Block

3 FastTrack Interconnect
3 Dedicated inputs

a  I/0Oelement

General The fine-grained architecture and high register count characteristic of
. s FPGAs are combined with the high speed and predictable interconnect
Descﬂptlon delays of EPLDs to make the FLEX 8000 device family ideal for a wide

range of applications. Logic is implemented with compact 4-input look-up
tables (LUTs) and programmable registers. High performance is provided
by a fast, continuous network of routing resources.

FLEX 8000 devices provide a large number of storage elements for
applications such as digital signal processing, wide data-path manipulation,
and data transformation. These devices are an excellent choice for bus
interfaces, TTL integration, coprocessor functions, and high-speed
controllers. The high-pin-count packages can integrate multiple 32-bit
buses into a single device. Table 1 shows typical functions and performance
for FLEX 8000 devices.

All FLEX 8000 device packages provide four dedicated inputs for
synchronous control signals with large fan-outs. Each I/O pin has an
associated register on the periphery of the device. As outputs, these registers
provide fast Clock-to-output times; as inputs, they offer quick setup times.

Altera Corporation Page 15 |
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Application Note 40

Table 1. FLEX 8000 Performance

Application Logic Elements Used -2 Speed Grade -3 Speed Grade
16-bit prescaled counter 24 133 MHz 115 MHz
16-bit loadable counter 16 71 MHz 45 MHz
16-bit up/down counter 16 71 MHz 45 MHz
24-bit accumulator 24 48 MHz 32 MHz
16-line-to-1-line multiplexer 10 14 ns 17 ns

Functional
Description

The logic and interconnections in the FLEX 8000 architecture are configured
with CMOS SRAM cells. FLEX 8000 devices are configured at system
power-up, with data stored in a serial configuration EPROM device or
provided by a system controller. Altera offers the EPC1213 and EPC1064
Configuration EPROMs, which configure FLEX 8000 devices via a serial
data stream. Configuration data can also be stored in an industry-standard
32K x 8-bit or larger EPROM or downloaded from system RAM. After a
FLEX 8000 device has been configured, it can be reconfigured in-circuit by
resetting the device and loading new data. Because reconfiguration requires
less than 100 ms, real-time changes can be made during system operation.

You can use Altera’s MAX+PLUS II development system to create
FLEX 8000 logic designs with any combination of graphic, text—including
the Altera Hardware Description Language (AHDL), Verilog HDL, and
VHDL—and waveform design entry. Full simulation, worst-case timing
analysis, and functional testing are available for design verification.
MAX+PLUS I also provides an EDIF netlist interface for additional design
entry and simulation support with industry-standard CAE tools. In
addition, MAX+PLUS II can export Verilog HDL and VHDL netlist files.

The FLEX 8000 architecture incorporates a large matrix of compact building
blocks called logic elements (LEs). Each LE contains a 4-input LUT that
provides combinatorial logic capability and a programmable register that
offers sequential logic capability. The fine-grained structure of the LE
provides highly efficient logic implementation.

LEs are grouped into sets of eight to create Logic Array Blocks (LABs).
Each FLEX 8000 LAB is an independent structure with common inputs,
interconnections, and control signals. The LAB architecture provides a
coarse-grained structure for high device performance and easy routing.
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Figure 1 shows a block diagram of the FLEX 8000 architecture. LABs are
arranged into rows and columns. The I/O pins are supported by 1/0
elements (IOEs) located at the ends of rows and columns. Each IOE
contains a bidirectional I/O buffer and a flipflop that can be used as either
an input or output register.

Figure 1. FLEX 8000 Device Block Diagram

1O Element ——

(I0E)

FastTrack
Interconnect
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Logic Array
Block (LAB)
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Element (LE)

Signal interconnections within FLEX 8000 devices are provided by the
FastTrack Interconnect, a series of fast, continuous channels that run the
entire length and width of the device.

Logic Element The logic element (LE) is the smallest unit of logic in the FLEX 8000
architecture, with a compact size that provides efficient logic
implementation. Each LE contains a four-input LUT, a programmable
flipflop, a carry chain, and a cascade chain. Figure 2 shows a block diagram
of the LE.
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Figure 2. FLEX 8000 Logic Element (LE)
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The LUT is a function generator that can quickly compute any function of
four variables. The programmable flipflop in the LE can be configured for
D, T, JK, or SR operation. The Clock, Clear, and Preset control signals on
the flipflop can be driven by dedicated input pins, general-purpose I/O
pins, or any internal logic. For purely combinatorial functions, the flipflop
is bypassed and the output of the LUT goes directly to the output of the LE.

The FLEX 8000 architecture provides two dedicated high-speed paths, the
carry and cascade chains, that connect adjacent LEs without using general-
purpose interconnect paths. The carry chain supports high-speed counters
and adders; the cascade chain implements wide-input functions with
minimum delay. Cascade and carry chains connect all LEs in an LAB and
all LABs in the same row. Since heavy use of carry and cascade chains can
restrict the placement and routing of other logic, they are recommended
only for use in speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (less than 1 ns) carry-forward function
between LEs. The carry-in signal from a lower-order bit moves forward
into the higher-order bit via the carry chain, and feeds into both the LUT
and the next portion of the carry chain. This feature allows the FLEX 8000
architecture to implement high-speed counters and adders of arbitrary
width. The MAX+PLUS II Compiler can create carry chains automatically
during design processing; designers can also insert carry chain logic
manually during design entry.
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Figure 3 shows how an n-bit full adder can be implemented in n+1 LEs by
using the carry chain. One portion of the LUT generates the sum of two bits
using the input signals and the carry-in signal; the sum is routed to the
output of the LE. The register is typically bypassed for simple adders, but
can be used for an accumulator function. Another portion of the LUT
generates the carry-out signal, which is routed directly to the carry-in
signal of the next-higher-order bit. The final carry-out signal is routed to an
LE, where it can be used as a general-purpose signal. In addition to
mathematical functions, the carry chain logic supports very fast counters
and comparators.

Figure 3. Carry Chain Operation
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Cascade Chain

With the cascade chain, the FLEX 8000 architecture can implement functions
that have a very wide fan-in. Adjacent LUTs can be used to compute
portions of the function in parallel; the cascade chain serially connects the
intermediate values. The cascade chain can use a logical AND or logical OR
(via De Morgan's inversion) to connect the outputs of adjacent LEs. Each
additional LE provides four more inputs to the effective width of a function,
with a delay of approximately 1 ns per LE. The MAX+PLUS II Compiler
can create cascade chains automatically during design processing; designers
can also insert cascade chain logic manually during design entry.

Figure 4 shows how the cascade function can connect adjacent LEs to form
functions with a wide fan-in. These examples show functions of 4 variables
implemented with 1 LEs. The LE delay is approximately 6 ns; the cascade
chain delay is 1 ns. With the cascade chain, 9 ns is needed to decode a 16-bit
address.

Figure 4. Cascade Chain Operation
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Logic Element Operating Modes

The FLEX 8000 logic element can operate in one of four modes, shown in
Figure 5, each of which uses LE resources differently. In each mode, seven
of the ten available inputs to the LE—the four data inputs from the LAB
local interconnect, the feedback from the programmable register, and the
carry-in and cascade-in from the previous LE—are directed to different
destinations to implement the desired logic function. The three remaining
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inputs to the LE provide Clock, Clear, and Preset control for the register.
MAX+PLUS 1II software automatically chooses the appropriate mode for
each application. Design performance can be enhanced by designing for
the operating mode that best supports the desired application.

Figure 5. FLEX 8000 Logic Element Operating Modes
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Normal Mode

The Normal mode is suitable for general logic applications and wide
decode functions that can take advantage of a cascade chain. In Normal
mode, four data inputs from the LAB local interconnect and the carry-in
are the inputs to a 4-input LUT. The MAX+PLUS Il Compiler automatically
selects the carry-in or the DATA3 signal as an input that is physically
controlled by a configurable SRAM bit. The LUT output can be combined
with the cascade-in signal to form a cascade chain through the cascade-out
signal. The LE Out signal—the data output of the LE—is either the
combinatorial output of the LUT and cascade chain, or the Q output of the
programmable register.

Arithmetic Mode

The Arithmetic mode offers two 3-input LUTs that are ideal for
implementing adders, accumulators, and comparators. One LUT provides
a 3-bit function; the other generates a carry bit. As shown in Figure 5, the
first LUT uses the carry-in signal and two data inputs from the LAB local
interconnect to generate a combinatorial or registered output. For example,
in an adder, this output would be the sum of three bits: A, B, and carry-in.
The second LUT uses the same three signals to generate a carry-out signal,
thereby creating a carry chain. The Arithmetic mode also supports a
cascade chain. :

Up/Down Counter Mode

The Up/Down Counter mode offers counter enable, synchronous up/
down control, and data loading options. These control signals are generated
by the data inputs from the LAB local interconnect, the carry-in signal, and
output feedback from the programmable register. Two 3-input LUTs are
used: one generates the counter data, the other generates the fast carry bit.
A 2-to-1 multiplexer provides synchronous loading. Data can also be
loaded asynchronously with the Clear and Preset register control signals,
without using the LUT resources.

Clearable Counter Mode

The Clearable Counter mode is similar to the Up/Down Counter mode,
but supports a synchronous Clear instead of the up/down control. The
Clear function is substituted for the cascade-in signal in the Up/Down
Counter mode. Two 3-input LUTs are used: one generates the counter
data, the other generates the fast carry bit. Synchronous loading is provided
by a 2-to-1 multiplexer, the output of which is ANDed with a synchronous
Clear.
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Clear/Preset Logic Control

Logic for the programmable register’s Clear and Preset functions is
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE (see
Figure 6). The Clear function is controlled by DATA3, LABCTRL1, and
LABCTRL2; the Preset function is controlled by DATA3 and LABCTRLI.
The MAX+PLUS II Compiler automatically selects the best control signal
implementation during compilation. Preset control can also be provided
by using a Clear and inverting the output of the register. Inversion control
is available for the inputs to both LEs and IOEs. Therefore, if a register is
cleared by only one of the two LABCTRL signals, the DATA3 input is not
required and can be used for one of the LE operating modes.

(72
-]
Figure 6. Logic Element Clear & Preset Logic 2
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Log ic Arrav A Logic Array Block (LAB) consists of eight LEs, their associated carry and
cascade chains, LAB control signals, and the LAB local interconnect. The

Block LAB provides the coarse-grained structure of the FLEX 8000 architecture
for efficient routing with high device utilization and high performance.
Figure 7 shows a block diagram of the FLEX 8000 LAB.
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Figure 7. Logic Array Block (LAB)
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Each LAB provides four control signals that can be used in all eight LEs.
Two of these signals can be used as Clocks, the other two for Clear/Preset
control. The LAB control signals can be driven directly from a dedicated
input pin, an1/0 pin, or any internal signal via the LAB local interconnect.
The dedicated inputs are typically used for global Clock, Clear, or Preset
signals because they provide synchronous control with very low skew
across the device. If logic is required on a control signal, it can be generated
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in one or more LEs in any LAB and driven into the local interconnect of the
target LAB. Programmable inversion is available for all four LAB control

signals.
FastTrack In the FLEX 8000 architecture, connections between LEs and device I/O
pins are provided by the FastTrack Interconnect, a series of continuous
Interconnect horizontal and vertical routing channels that traverse the entire FLEX 8000

device. This device-wide routing structure provides predictable
performance even in complex designs. In contrast, the segmented routing
in FPGAs requires switch matrices to connect a variable number of routing
paths, increasing the delays between logic resources and reducing
performance.

The LABs within FLEX 8000 devices are arranged into a matrix of columns
and rows. Each row of LABs has a dedicated row interconnect that routes
signals both into and out of the LABs in the row. The row interconnect can
then drive I/O pins or feed other LABs in the device. Figure 8 shows how
an LE drives the row and column interconnect.
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)

Figure 8. LAB Connections to Row and Column Interconnect

16 Column
Channels
—
[ ]
[ ]
Row Channels .
Each LE drives one —
row channel.
i
—1—e
LE1 * [
/_ _\ eee
AA *
LE2 . L‘T_E
v l
to Local  to Local Each LE drives up to
Feedback Feedback two column channels.

Altera Corporation Page 25




| FLEX 8000 Architecture

Application Note 40 J

Each LE in an LAB can drive up to two separate column interconnect
channels. Therefore, all 16 available column channels can be driven by the
LAB. The column channels run vertically across the entire device, and
LABs in different rows share access to them via partially populated
multiplexers. The MAX+PLUS II Compiler chooses which LEs must be
connected to a column channel. A row interconnect channel can be fed by
the output of the LE or by two column channels. These three signals feed a
multiplexer that connects to a specific row channel. Each LE is connected
to one 3-to-1 multiplexer. In an LAB, the multiplexers provide all 16
column channels with access to the row channels.

Each column of LABs has a dedicated column interconnect that routes
signals out of the LABs in the column. The column interconnect can then
drive I/O pins or feed into the row interconnect to route the signals to
other LABs in the device. A signal from the column interconnect, which
can be either the output of an LE or an input from an I/O pin, must transfer
to the row interconnect before it can enter an LAB. Table 3 summarizes the
FastTrack Interconnect resources available in each FLEX 8000 device.

Table 2. FLEX 8000 FastTrack Interconnect Resources
Device Rows | Channels per Row | Columns | Channels per Column

EPF8282, 2 168 13 16
EPF8282V

EPF8452 2 168 21 16
EPF8636 3 168 21 16
EPF8820 4 168 21 16
EPF81188 6 168 21 16
EPF81500 6 216 27 16

Figure 9 shows the interconnection of four adjacent LABs, with row,
column, and local interconnects, as well as the associated cascade and
carry chains.
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Figure 9. FLEX 8000 Device Interconnect Resources
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Row-to-10E Connections

Figure 10 illustrates the connection between row interconnect channels
and IOEs. An input signal from an IOE can drive two separate row
channels. When an IOE is used as an output, the signal is driven by an
n-to-1 multiplexer that selects the row channels. The size of the multiplexer
varies with the number of columns in a device. The EPF81500 uses a
27-to-1 multiplexer; the EPF81188, EPF8820, EPF8636, and EPF8452 use a
21-to-1 multiplexer; and the EPF8282 and EPF8282V use a 13-to-1
multiplexer. Eight IOEs are connected to each side of the row channels.
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Figure 10. FLEX 8000 Row-to-I0E Connection
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Column-to-10E Connections

On the top and bottom of the column channels are two IOEs (see Figure 11).
When an IOE is used as an input, it can drive up to 2 separate column
channels. The output signal to an IOE can choose from 8 of the 16 column
channels through an 8-to-1 multiplexer.

Dedicated In addition to the general-purpose I/O pins, FLEX 8000 devices have four
dedicated input pins. These dedicated inputs provide low-skew, device-
Inputs wide signal distribution, and are typically used for global Clock, Clear,

and Preset control signals. The signals from the dedicated inputs are
available as control signals for all LABs and I/O elements in the device.

Page 28

Altera Corporation I




Application Note 40

FLEX 8000 Architecture |

1/0 Element

Figure 11. FLEX 8000 Column-to-IOE Connection
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The dedicated inputs can also be used as general-purpose data inputs for
nets with large fan-outs because they can feed the local interconnect of
each LAB in the device.

Figure 12 shows the I/O element (IOE) block diagram. Signals enter the
FLEX 8000 device from either the I/O pins that provide general-purpose
input capability or the four dedicated inputs that are typically used for
fast, global control signals. The IOEs are located at the ends of the row and
column interconnect channels.

I/0 pins can be used as input, output, or bidirectional pins. Each I/O pin
has a register that can be used either as an input register for external data
that requires fast setup times, or as an output register for data that requires
fast Clock-to-output performance. The MAX+PLUS II Compiler uses the
programmable inversion option to automatically invert signals from the
row and column interconnect when appropriate.

The output buffer in each IOE has an adjustable output slew rate that can
be configured for low-noise or high-speed performance. A faster slew rate
provides a speed increase of up to 4 ns, but may introduce more noise into
a system than a slow slew rate. The fast slew rate should be used for speed-
critical outputs in systems that are adequately protected against noise.
Designers can specify the slew rate on a pin-by-pin basis during design
entry or assign a default slew rate to all pins on a global basis.

The Clock, Clear, and Output Enable controls for the IOEs are provided by
a network of I/O control signals. These signals can be supplied by either

Altera Corporation
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Figure 12. I/0 Element (IOE)
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the dedicated input pins or internal logic. The IOE control-signal paths are
designed to minimize the skew across the device. All control-signal sources
are buffered onto high-speed drivers that drive the signals around the
periphery of the device. This “peripheral bus” can be configured to provide
up to four Output Enable signals (ten in the EPF81500), and up to two
Clock or Clear signals. Figure 12 illustrates how two Output Enable signals
are shared with one Clock (CLK1) and one Clear (CLR1) signal.

The signals for the peripheral bus can be generated by any of the 4
dedicated inputs or signals on the row interconnect channels, as shown in
Figure 13. The number of row channels used correlates to the number of
columns in the FLEX 8000 device. The EPF8282 and EPF8282V, for example,
use 13 channels; the EPF8452, EPF8636, EPF8820, and EPF81188 use 21
channels; and the EPF81500 uses 27 channels. The first LE in each LAB is
the source of the row channel signal. The 6 peripheral control signals (12 in
the EPF81500) can be accessed by every I/O element. The MAX+PLUS II
Compiler uses the programmable inversion option to automatically invert
signals from the dedicatd inputs or row channels.
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Figure 13. FLEX 8000 Peripheral Bus
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Table 4 lists the row source of the peripheral control signal for each

FLEX 8000 device.
Table 3. Row Sources of Peripheral Control Signals
Peripheral | EPF8282 |EPF8452 | EPF8636 | EPF8820 | EPF81188 | EPF81500

Control | EPF8282V

Signal

CLKO Row A Row A Row A Row A Row E Row E
CLK1 Row B Row B Row C Row C Row B Row B
CLRO Row A Row A Row B Row B Row F Row F
CLR1 Row B Row B Row C Row D Row C Row C
OE0 Row A Row A Row A Row A Row D Row A
OEl Row B Row B Row B Row B Row A Row A
OE2 - - - - - Row B
OE3 - - - - - Row C
OE4 - - - - - Row D
OE5 - - - - - Row D
OE6 - - - - - Row E
OE7 - - - - - - Row F
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JTAG

Device
Configuration

Conclusion

The EPF8282, EPF8282V, EPF8636, EPF8820, and EPF81500 devices support
the Joint Test Action Group (JTAG) boundary-scan testing. For detailed
information on JTAG operation in these FLEX 8000 devices, refer to
Application Note 39 (JTAG Boundary-Scan Testing in FLEX 8000 Devices) in
this handbook.

FLEX 8000 devices support a variety of configuration schemes. Refer to
Application Note 33 (Configuring FLEX 8000 Devices) and Application Note 38
(Configuring Multiple FLEX 8000 Devices) in this handbook.

The architecture of FLEX 8000 devices allows you to achieve maximum
optimization and performance. The different LE operating modes facilitate
efficient use of LE resources. Carry and cascade chains provide high-speed
data paths in performance-critical portions of the design. Input and output
signals can be registered in the IOEs without wasting internal LE resources.
Together, the features of the FLEX 8000 architecture provide a high-
density logic solution for a wide variety of logic applications.
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Introduction The architecture of Altera’s Flexible Logic Element MatriX (FLEX) devices

supports several different configuration schemes for loading a design into
a single FLEX 8000 device on the circuit board. This application note
provides complete details on all aspects of configuring individual
FLEX 8000 devices, including sample schematics and timing information.

This application note should be used together with the current FLEX 8000
Programmable Logic Device Family and Configuration EPROMs for FLEX 8000
Devices data sheets. For information on configuring multiple FLEX 8000
devices in a system, refer to Application Note 38 (Configuring Multiple
FLEX 8000 Devices) in this handbook. If appropriate, illustrations in this
application note show devices with generic “FLEX 8000” and
“Configuration EPROM” labels to indicate that they are valid for all
FLEX 8000 devices and Altera Configuration EPROMs. All timing
parameters shown in figures and tables apply to all FLEX 8000 device
speed grades.

<
o =i
e
= =
o =
=g
o 2
=
(7]

The following topics are discussed:

0 FLEX 8000 device operating modes ...........cccccccoceiruiiniccnnunrecneresnennnns 33

0 Overview of configuration SChemes ...........cccccecuvueuvevcuernrreneninecennnens 34

O Choosing a configuration scheme ............ccoouvieiiiciiiniiccninencienennn. 35

0 FLEX 8000 device configuration schemes ...........ccccccviueuvinccreunnncnnn. 37

- Active serial configuration ..........c.ccccovcuviiiiiicrnicineccnieeenen, 37

- Active parallel up & active parallel down configuration .......... 41

- Passive parallel synchronous configuration ..........ccceceeerennnne.. 45

—  Passive parallel asynchronous configuration ...........coeeevevnnenen. 47

—  Passive serial configuration ............coccecececeoeenrnennnncesereerereeeenne 51

O In-circuit reconfiguration ... 56

O Configuration control features ...........coooeeeererireeeernecreseneeeneenen. 57

0 MAX+PLUS II configuration & programming support ................... 63

d  Configuration reliability ...........ccooviriiiiiiicininiccccrceecreesceeeees 69

FLEX 8000 The FLEX 8000 architecture uses SRAM cells to store the configuration
. data for the device. These SRAM cells must be loaded each time the circuit
Device powers up and begins operation. The process of physically loading the
0 pe ratin g SRAM programrping data into the FLEX ?3000 devic':e is ca%led configumtiqn.
After configuration, the FLEX 8000 device resets its registers, enables its

MOdeS 1/0 pins, and begins operation as a logic device. This reset operation is

called initialization. Together, the configuration and initialization processes
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Overview of

are called command mode; normal in-circuit device operation is called user
mode.

SRAM technology allows FLEX 8000 devices to be reconfigured in-circuit
by loading new configuration data. Real-time reconfiguration can be
performed by forcing the device into command mode with a dedicated
device pin, loading different configuration data, reinitializing the device,
and resuming user-mode operation. The entire process requires less than
100 ms, and can be used to dynamically reconfigure FLEX 8000 devices
during system operation.

You can update existing systems that incorporate FLEX 8000 devices by
installing new data in the system. Such in-field upgrades can be as simple
as copying a new configuration file to a hard disk or inserting an EPROM
programmed with new configuration data into the circuit.

Device configuration can occur either automatically at system power-up
or under the control of external logic. Initialization can be controlled by the
internal oscillator in the FLEX 8000 device or by an external Clock signal.
Dedicated device configuration pins can be used to control when
configuration and initialization begin. This range of command-mode control
features provides excellent flexibility for designs implemented in FLEX 8000
devices.

The configuration data for a FLEX 8000 device can be loaded with one of
six configuration schemes, which you choose on the basis of the target

conflguratiﬂn application. Both active and passive schemes are available. In an active
Schemes configuration scheme, the FLEX 8000 device guides the configuration
operation, controlling external memory devices and the initialization
process. The Clock source for all active configuration schemes is an internal
oscillator in the FLEX 8000 device that typically operates in the range of
2to 6 MHz. In a passive configuration scheme, an external controller
guides the configuration of the FLEX 8000 device, which operates as a
slave. Table 1 shows the source of data for each of the six configuration
schemes.
Table 1. Configuration Schemes
Configuration Scheme Acronym Data Source
Active serial AS Altera Configuration EPROM
Active parallel up APU Parallel EPROM
Active parallel down APD Parallel EPROM
Passive serial PS Serial data path
Passive parallel synchronous PPS Intelligent host
Passive parallel asynchronous PPA Intelligent host
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Choosing a
Configuration
Scheme

Each FLEX 8000 device has a different size requirement for its configuration
data, based on the number of SRAM cells in the device. Table 2 shows the
approximate size of data, expressed in both bits and Kbytes, necessary to
configure each FLEX 8000 device. You can use this table to calculate the
data space (i.e., data storage resources) required in a parallel or serial data
source for a system that incorporates FLEX 8000 devices.

Table 2. FLEX 8000 Device Data-Size Spaces
Device Data Size (bits) Data Size (Kbytes)
EPF8282, EPF8282V 40,000 5
EPF8452 64,000 8
EPF8636 96,000 12
EPF8820 128,000 16
EPF81188 192,000 24
EPF81500 250,000 31

Active Configuration

In an active configuration scheme, the FLEX 8000 device controls the entire
configuration process and generates the synchronization and control signals
necessary to configure and initialize itself from an external memory. The
active serial (AS) configuration scheme uses an Altera Configuration
EPROM to store the configuration data. The active parallel up (APU) and
active parallel down (APD) configuration schemes use a parallel-format
memory such as a 32K x 8-bit EPROM as the data source.

Passive Configuration

In a passive configuration scheme, the FLEX 8000 device is incorporated
into a system with an intelligent host that controls the configuration
process. The intelligent host transparently selects a serial or parallel data
source, and the data is presented to the FLEX 8000 device on a common
data bus. In this type of system, the configuration data can be stored in a
mass-storage medium, such as a hard disk. With passive configuration
schemes, new configuration data is easily installed by supplying a new
configuration file on a diskette or tape.

The best configuration scheme for a particular application depends on
many factors, such as the presence of an intelligent host in the system, the
need to reconfigure in real-time, and the need to periodically install new
configuration data. Available board space is also a consideration for config-
uration schemes that use parallel or serial EPROMs to store configuration
data.

l Altera Corporation
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The following guidelines can help you decide which configuration scheme
is most appropriate for your application:

a

For fast time-to-market, the easiest and quickest configuration schemes
to implement are the three active configuration schemes: active serial
(AS), active parallel up (APU), and active parallel down (APD). These
configuration schemes require no external intelligence. The FLEX 8000
device is typically configured automatically at system power-up. If
the FLEX 8000 device senses a power failure, it automatically triggers
a reconfiguration cycle.

For fast prototyping and development work, the passive serial (PS)
configuration scheme, together with the FLEX Download Cable,
provides the quickest means of iterative design analysis. The
MAX+PLUSII Programmer can directly download configuration data
to a FLEX 8000 device on the prototype circuit board.

If a FLEX 8000 device is incorporated into a system with an intelligent
host, you can use this host to control the configuration process in one
of the passive configuration schemes: passive parallel asynchronous
(PPA), passive parallel synchronous (PPS), or passive serial (PS). The
configuration data can be stored in a mass-storage medium, such as a
hard disk, thereby reducing the number of ICs required for the system.
The FLEX 8000 device configuration can also be synchronized with
any other system resources that must be initialized.

In applications that require real-time device reconfiguration—such as
data transformation filters, video formatters, and encryption/
decryption circuits—the best choice is one of the passive configuration
schemes. Reconfigurability allows you to reuse the logic resources
within the FLEX 8000 device, instead of designing redundant or
duplicate circuitry into your systems. Passive configuration schemes
easily support the multiple sources of configuration data that may be
required for real-time configuration. However, these schemes require
more external circuitry. The FLEX 8000 device must rely on an intell-
igent host to retrieve and load new configuration data, and cannot
perform any of the tasks required for reconfiguration.

If field upgrades are anticipated, passive configuration schemes offer
the ability to easily install new configuration data. New configuration
files can be supplied to end users on diskette or tape. (In active
schemes, a new EPROM must be inserted into the system.)

You can also use multiple configuration schemes during system operation.
If you choose a single configuration scheme, you can simply hard-wire the
three configuration scheme selection pins (nSP, MSEL1, and MSELO) to
their necessary levels (Vcc or GND). If you use multiple configuration
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Configuration
Schemes

schemes, you can drive these selection pins with some controlling logic or
connect them to a port on an intelligent host. For example, you can
configure a FLEX 8000 device with an AS configuration scheme to load its
“start-up” configuration data, then dynamically change the configuration
scheme selection bits to select a different configuration scheme, and provide
a different configuration data source.

The following sections describe each configuration scheme in detail:

Active serial (AS) configuration

Active parallel up (APU) and active parallel down (APD) configuration
Passive parallel synchronous (PPS) configuration

Passive parallel asynchronous (PPA) configuration

Passive serial (PS) configuration

oooomp

In-circuit reconfiguration, device configuration option bits, device
configuration pins, and the source of data for each configuration scheme
are described later in this application note.

Active Serial Configuration

The active serial (AS) configuration scheme uses an Altera-supplied serial
Configuration EPROM (e.g., EPC1213) as a data source for FLEX 8000
devices. The Configuration EPROM presents its data to the FLEX 8000
device in a serial bit-stream. Figure 1 shows a typical circuit in which the
FLEX 8000 device controls the configuration process and uses a
Configuration EPROM as the data source.

The nCONFIG pin on the FLEX 8000 device in Figure 1 is connected to V¢,
so the device automatically configures itself at system power-up. The
system can monitor the nSTATUS pin to ensure that configuration occurs

Figure 1. Active Serial Device Configuration
Vee vCcC VvCC

1kQ %1 ko  Configuration
EPROM

FLEX 8000
——
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correctly. Immediately after power-up, the FLEX 8000 device pulls the
nSTATUS pin low and releases it within 100 ms. Once released, the open-
drain nSTATUS pin is pulled up to V¢ by an external 1.0-kQ pull-up
resistor. If an error occurs during configuration, the FLEX 8000 device
pulls thenSTATUS pin low, indicating that configuration was unsuccessful.

The DCLK signal, which is driven by the FLEX 8000 device, clocks sequential
data bits from the Configuration EPROM. While the SRAM data is being
loaded, the FLEX 8000 device holds the open-drain CONF_DONE pin at
GND, indicating that data is loading. A 24-bit program-length counter
within the FLEX 8000 device stores the program length, i.e., the total
number of configuration bits. Once the terminal count value for the
configuration data (i.e., the last configuration data bit) has been reached,
the FLEX 8000 device releases the CONF_DONE pin, which is subsequently
pulled up to V¢ by an external 1.0-kQ pull-up resistor. The resulting high
input on the nCs pin causes the Configuration EPROM to tri-state its DATA
output, electrically removing the Configuration EPROM from the circuit.

After it releases the CONF_DONE pin, the FLEX 8000 device uses it as an
input for monitoring the configuration process. When the FLEX 8000
device senses a high logic level on CONF_DONE, it completes the initialization
process and enters user mode. Figure 2 shows the timing associated with
the AS configuration process and the order of transitions on the control
signals.

Figure 2. Active Serial Configuration Timing Waveforms

OE/nCONFIG
nSTATUS
nCS/CONF_DONE
DCLK '
-+ ietgo i lpsu
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> loezx ilenilo tpy > i+ / lesxz > i+

Table 3 provides values for the AS timing parameters.
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Table 3. Active Serial Configuration Timing Parameters

Symbol Parameter Min | Max | Unit
toezx OE high to DATA output enabled 50 ns
teszx nCs low to DATA output enabled 50 ns
tosxz nCs high to DATA output disabled 50 ns
ten DCLK high time 80 250 | ms
ta DCLK low time 80 250 | ms
tpsu Data setup time before rising edge on DCLK 50 ns
tpH Data hold time after rising edge on DCLK 0 ns
tco DCLK to DATA out 75 ns
toew OE low pulse width to guarantee counter reset 100 ns
tosH nCS low hold time after DCLK rising edge 0 ns
fmax DCLK frequency 2 6 |MHz

In the circuit shown in Figure 1, the nCONF IG pin on the FLEX 8000 device
is tied to the Output Enable (OE) input of the Configuration EPROM; both
are tied to V. A high logic level on the nCONFIG input automatically
starts the configuration. The output of the Configuration EPROM is enabled
by a high input on its OE pin. If an error occurs during circuit configuration,
the FLEX 8000 device pulls and holds the nSTATUS pin low, indicating a
configuration error. External circuitry is used to monitor the nSTATUS pin
and take appropriate action if configuration fails. This circuitry must assert
a high-low-high pulse on the nCONFIG pin to reconfigure the device after
the error. The same circuitry can also be used to begin reconfiguring the
FLEX 8000 device at any time after system power-up.

The FLEX 8000 device’s built-in Auto-Restart Configuration on Frame Error
option bit, which can be set with MAX+PLUS Il software, allows the device
to automatically reconfigure itself if it encounters an error during
configuration. (For descriptions of all FLEX 8000 device option bits, refer to
“Device Configuration Option Bits” later in this application note.) If this
option bit is turned on, a configuration error causes the FLEX 8000 device
to pull thenSTATUS pin low for 10 internal Clock cycles and then release it.
This 1- to 3-us pulse on the nSTATUS pin provides an external indication
that reconfiguration is about to begin. It also can be used to reset the
Configuration EPROM.

Figure 3 shows a circuit that uses the Auto-Restart Configuration on Frame
Error option. The nSTATUS pin is connected to the OE input on the
Configuration EPROM so that the error-reset pulse on nSTATUS resets the
internal address counter on the Configuration EPROM and prepares it to
reconfigure the FLEX 8000 device. The nCONFIG input is also available to
initiate a reconfiguration cycle externally. Since the nSTATUS pin is pulled

Altera Corporation
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low and then released whenever configuration begins, it resets the
Configuration EPROM before reconfiguration. If V¢ drops below the
power-on reset (POR) threshold for the FLEX 8000 device during device
operation, nSTATUS is pulsed and the Configuration EPROM is reset in the
same way to provide automatic reconfiguration. Timing for the circuit in
Figure 3is identical to the timing shown in Figure 2 for the AS configuration
scheme (the error-reset pulse on nSTATUS is not shown).

Figure 3. Active Serial Device Configuration with Automatic Reconfiguration on
Error

VvCC vcC vCcC

1kQ §1 ke  Configuration
EPROM

FLEX 8000
w0 = .

Altera Configuration EPROMs are designed for performance that is
compatible with the setup and hold time requirements of FLEX 8000
devices. Refer to the current Configuration EPROMs for FLEX 8000 Devices
Data Sheet for complete details on timing and circuitry. Details on device
programming are given in “Programming a Configuration EPROM” later
in this application note.

Active Serial Configuration for Multiple Configuration EPROMs

Multiple Configuration EPROMs can be serially connected to configure a
FLEX 8000 device that requires more configuration data than a single
Configuration EPROM can store. For example, the EPF81500 requires
approximately 250 Kbits of configuration data, but an EPC1213
Configuration EPROM stores a maximum of 213 Kbits. Therefore, two
Configuration EPROMs are needed to configure an EPF81500 device.

Figure 4 shows a typical circuit in which a FLEX 8000 device is configured
by two Altera Configuration EPROMs. The FLEX 8000 device drives the
DCLXK signal out to both Configuration EPROMs during configuration, and
receives configuration data on its DATAO input. The first Configuration
EPROM drives its nCASC output low and tri-states its DATA pin after
clocking out all of its configuration data. The high-to-low transition on
nCASC enables the nCS input on the second Configuration EPROM and
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Figure 4. Active Serial Configuration of an EPF81500 Device with Automatic Reconfiguration on Error
vCcC VCC VCC
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Once all configuration data has been clocked into the FLEX 8000 device,
the device releases the CONF_DONE pin, which is subsequently pulled up
to V¢ by an external 1.0-kQ pull-up resistor. The resulting high input on
the nCs input to the first Configuration EPROM drives its nCASC output
high, which in turn drives the nCS input to the second Configuration
EPROM high, electrically removing both Configuration EPROMs from the
circuit.

In the circuit shown in Figure 4, the FLEX 8000 device’s built-in Auto-
Restart Configuration on Frame Error option bit allows the device to
automatically reconfigure itself if it encounters an error during
configuration. The nSTATUS pin is connected to the OE pins on the
Configuration EPROMs. If the FLEX 8000 device detects a configuration
error, it pulls the nSTATUS pin low for 10 internal Clock cycles and then
releases it. This 1- to 3-us pulse on the nSTATUS pin resets the Configuration
EPROMs with a low pulse on the OE pins.

Active Parallel Up & Active Parallel Down Configuration

In the active parallel up (APU) and active parallel down (APD) configuration
schemes, the FLEX 8000 device generates sequential addresses that drive
the address inputs to an external PROM. The PROM then returns the
appropriate byte of data on the data pins DATA [ 7 . . 0]. Sequential addresses
are generated until the FLEX 8000 device has been completely loaded. The
CONF_DONE pin is then released and pulled high externally, indicating
that configuration has been completed. The counting sequence can be
ascending (00000H to 3FFFFH) for APU configuration or descending
(3FFFFH to 00000H) for APD configuration.
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Figure 5 shows a typical circuit with a FLEX 8000 device and a parallel
EPROM for APU or APD configuration. In this circuit, the nCONFIG input
to the FLEX 8000 device is connected to a system-wide, active-low Reset
signal. The nCONFIG pin can be tied to Vc (as shown in Figure 1) to start
configuration automatically at system power-up; however, the system-
wide Reset allows you to explicitly control the time at which configuration
begins. The nCONFIG pin must be held low to meet the minimum low
pulse width requirement for f-r (see Table 4 later in this application note).

Figure 5. Active Parallel Device Configuration with a 256-Kbyte EPROM

System Reset —
(Active Low)

vcC VCC
1kQ %1 kQ 256-Kbyte
FLEX 8000 EPROM
ugqn - P SONE nOE
“0” = UP _C: NCE DATA[7..0] ==
“1” = DOWN
“«0” | ADD[17..0]

Figure 6 shows the timing associated with the circuit in Figure 5. The high-
low-high pulse on the nCONFIG pin starts the configuration process. The
nSTATUS pin is pulled low for up to 100 ms, and the CONF_DONE pin is
pulled down to GND. Once the CONF_DONE pin is low, address generation
begins. The low logic level on the CONF_DONE pin also enables the output
of the EPROM. In an APU configuration scheme, the firstaddress generated
is 00000H; in an APD configuration scheme, it is 3FFFFH.

The configuration events in Figure 6 are based on the RDCLK signal rather
than the DCLK signal. The RDCLK signal, a Clock signal that is generated by
dividing the DCLK signal by eight, is used to frame the data bytes supplied
by the parallel EPROM. In the APU and APD configuration schemes, the
FLEX 8000 device generates the DCLK signal internally and uses it to
serialize the incoming data words. On each pulse of the RDCLK signal, the
FLEX 8000 device latches an 8-bit byte, and the following eight pulses on
DCLK convert that 8-bit value into a serial data stream. The RDCLK signal is
available as an output pin during configuration. (In user mode, the RDCLK
pin is available as an I/O pin.) You can monitor this signal to ensure that
the parallel EPROM observes the data setup and hold time requirements
for the FLEX 8000 device.
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Figure 6. Active Parallel Up Configuration Timing Waveforms

A rising edge on RDCLK increments the address counter ADDR([17..0], which is driven out to the parallel EPROM. The
parallel EPROM then sends the addressed byte of configuration data to the FLEX 8000 device.
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A new address is presented on the ADD[17..0] pins a short time (tcay)
after a rising edge on RDCLK. Table 4 shows the timing parameters for the
APU and APD configuration in Figure 5. Before the subsequent rising edge
on RDCLK, the external parallel EPROM must present valid data soon
enough to meet the tjg;; setup time for the data. This subsequent rising
edge on RDCLK latches data, based on the address generated by the
previous Clock cycle. EPROMs with access times faster than 500 ns should
be used to guarantee the data setup time.

Table 4. Active Parallel Up & Down Configuration Timing Parameters

Symbol Parameter Min | Max | Unit
tcrosT nCONFIG low to nSTATUS low 1 us
terg nCONFIG low pulse width 2 us
tstatus |nSTATUS low pulse width 25 us
tcrecp nCONFIG low to CONF_DONE low 1 us
tcroay nCONFIG high to first valid address 35 us
tcav RDCLK rising edge to address valid 1 us
tpH Data hold time after rising clock edge (RDCLK) 0 ns
tpsu Data setup time before rising clock edge 50 ns

(RDCLK)

[ Altera Corporation Page 43




Configuring FLEX 8000 Devices Application Note 33 i

Once the terminal count value for the FLEX 8000 device configuration data
is reached, the FLEX 8000 device releases the CONF_DONE pin. The
CONF_DONE pin is pulled up to V¢ via the pull-up resistor, and the
FLEX 8000 device disables the output on the EPROM.

All FLEX 8000 devices provide 18 address lines, which are sulfficient to
uniquely decode up to 256 Kbytes of data, much more than the largest
FLEX 8000 device requires (see Table 2). Although the 18 address lines
limit FLEX 8000 devices to addressing 256 Kbytes of data, you can use a
larger EPROM device (e.g., 512 Kbytes, 1 Mbyte, 2 Mbytes, etc.) by masking
in the necessary offset addresses. In larger EPROMs, the FLEX 8000 device
configuration information is treated as a separate “page” in the EPROM,
and can be placed on any convenient boundary. However, some additional
logic is required to provide the offset address.

Figure 7 shows how you can use an Altera EP330 device as a decoder that
asserts the necessary page-offset address onto the address bus during
configuration. The EP330 allows the 18-bit address generated by the
FLEX 8000 device to select one of four 256-Kbyte “pages” in the EPROM.
The EP330 should monitor the nSTATUS and CONF_DONE signals to ensure
that errors are handled correctly. The inputs to the EP330 must be system-
level control signals that select the appropriate page in the EPROM to be
loaded into the FLEX 8000 device, and control when the configuration
actually occurs. Timing for the circuit in Figure 7 is identical to the timing
shown in Figure 6.

Figure 7. Active Parallel Device Configuration with Offset Address Generation Circuitry
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The active parallel configuration schemes can generate addresses in either
an ascending or descending order, depending on your system requirements.
Counting up (APU configuration) is appropriate if the FLEX 8000 config-
uration data is stored at the beginning of an EPROM, or if the configuration
data has been placed at some known offset in an EPROM larger than 256
Kbytes. Counting down (APD configuration) is appropriate if the low
addresses are not available, e.g., if the CPU code must use the beginning of
the EPROM or if the EPROM is also used to store other information that is
expected to increase as an application evolves. The changing nature of the
data size is characteristic of basic I/O system (BIOS) and boot PROMs.

Figure 8 shows an example of a BIOS EPROM memory map, in which the
FLEX 8000 configuration data is placed at the bottom of the memory space
in an APD configuration.

Figure 8. Typical BIOS EPROM Memory Map
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Passive Parallel Synchronous Configuration

In a passive parallel synchronous (PPS) configuration scheme, the FLEX 8000
device is tied to an intelligent host. With PPS configuration, data can be
driven directly onto a common data bus between the host and the FLEX 8000
device. The DCLK, CONF_DONE, nCONFIG, and nSTATUS signals are
connected to a port on the host. Although you can drive the DCLK signal
from the system Clock, you must have precise control of any interrupts
that can influence the internal counting of the FLEX 8000 devices. This
precise control is required because the FLEX 8000 device latches data on
the rising edge of the DCLK signal, and the next eight falling edges of the
DCLK signal serialize the latched data. New data is latched on every eighth
rising edge of the DCLK signal until the FLEX 8000 device is completely
configured.
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|

Figure 9 illustrates PPS configuration of a FLEX 8000 device. In this circuit,
the CPU generates a byte of configuration data and directs the FLEX 8000
device to latch and serialize the data by strobing a high pulse on the DCLK
input. In Figure 9, no specific source is shown for the databus DATA[7. . 0],
which is typically driven by a dedicated data latch. A microcontroller host
usually has byte-wide ports that can be used for this data bus. If the host is
a CPU or intelligent logic, a dedicated data register can be implemented
with an octal latch. Depending on the capability of the host and the
memory space implementation in the system, you can use an external
memory instead to drive the data onto the system data bus. This type of
external memory usage requires the memory to hold the data on the bus
while the host executes the commands to direct the FLEX 8000 device to
latch and serialize the data. However, not all processors can accommodate
this type of operation.

Figure 9. Passive Parallel Synchronous Device Configuration
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Figure 10 shows the timing for the PPS configuration scheme. The CPU
generates Clock cycles and data; eight DCLK cycles are required to latch
and serialize each 8-bit data word. A new data word must be present at the
DATA[7..0] inputs upon every eighth DCLXK cycle.
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Figure 10. Passive Parallel Synchronous Configuration Timing Waveforms
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Table 5 shows the timing parameters associated with PPS configuration. ‘c-: =
<«
)
s 3
Table 5. Passive Parallel Synchronous Configuration Timing Parameters g. g
Symbol Parameter Min | Max | Unit 2
terock nCONFIG high to first rising edge on DCLK 5 us
tpsu Data setup time before rising edge on DCLK 50 ns
toH Data hold time after rising edge on DCLK 0 ns
ten DCLK clock high time 80 ns
ter DCLK clock low time 80 s
tak DCLK period 160 ns
fmax DCLK maximum frequency 6 |MHz

Passive Parallel Asynchronous Configuration

With the passive parallel asynchronous (PPA) configuration scheme, a
FLEX 8000 device in a system can be configured in parallel with the rest of
a board. The FLEX 8000 device accepts a parallel byte of input data, then
serializes the data with its internal synchronization Clock. The device is
selected with the nCS and CS chip select pins, so multiple devices can
reside on the same data bus. The ability to select individual FLEX 8000
devices allows multiple devices to be configured in parallel by a single
intelligent host.

This efficient handshaking allows an intelligent host to simultaneously
configure multiple FLEX 8000 devices or other configurable portions of the
system. Figure 11 illustrates PPA configuration of a FLEX 8000 device. A
microcontroller is used as the intelligent host to ensure that sufficient
dedicated I/O ports are available to drive all control signals and the data
bus to the FLEX 8000 device. The chip select signals CS and nCS are both
used to select the device. However, you can also tie nCS to GND and
control chip selection with the CS pin only (or vice-versa), thus saving one
bit in the I/O port.
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Figure 11. Passive Parallel Asynchronous Device Configuration with Dedicated

Ports

‘Micro-
controller

1/O Port

uqn
aqn
“qn

FLEX 8000

vCC vCC

1kQ 1kQ
< <

&

\

Figure 12 shows the timing for the PPA configuration scheme. The CPU
presents an 8-bit data word to the FLEX 8000 device, and indicates that the
word is valid by strobing a low pulse on the nWS input. The FLEX 8000
device senses the rising edge of the nWs signal, latches the data on the
DATA[7..0] inputs, and uses its internal oscillator to serialize the 8-bit

data word.

Figure 12. Passive Parallel Asynchronous Timing Waveforms
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The CPU must poll the RDYnBUSY signal to establish when the FLEX 8000
device is ready to receive more data. RDYnBUSY falls immediately after the
rising edge of the nWs signal that latches data, indicating that the device is
busy. While the FLEX 8000 device processes the data byte, RDYnBUSY
remains low. On the eighth falling edge of DCLK, RDYnBUSY returns to
Ve, indicating that another byte of data can be latched. Table 6 shows the
timing parameters associated with PPA configuration.

Table 6. Passive Parallel Asynchronous Configuration Timing Parameters

Symbol Parameter Min | Max | Unit
tcrows nCONFIG high to first nws rising edge 5 T ps £
tpsu Data setup time before rising edge on nws 50 ns g_ ES
ton Data hold time after rising edge on nws 0 ns 5 5
tcssu Chip selected delay before rising edge on nws 50 ns = g
twsp nwWs low pulse width 500 s @
twses nws rising edge to RDYNBSY low 50 ns
tgusy RDYnBSY low pulse width 4 us
tapysws |RDYnBSY rising edge to nws falling edge 50 ns
twsors nwWs rising edge to nRS falling edge 500 ns
trsows nRS rising edge to nws falling edge 500 s
trsp7 nRS falling edge to DATA7 valid with RDYnBSY 50 s

signal

As an alternative to polling the RDYnBUSY signal, the CPU can determine
the status of the FLEX 8000 device by strobing a low pulse on the nRS input
to the FLEX 8000 device. This strobe causes the FLEX 8000 device to
present the RDYnBUSY status on the bidirectional pin DATA7 so that the
CPU can determine device status from the data bus, instead of using an
additional port on the CPU for the RDYnBUSY signal. This low pulse on
nRS must occur only during the corresponding high pulse (inactive) on the
nWs signal. The timing waveforms in Figure 13 show how the nRS pin can
be used to poll the status of the device with the bidirectional pin DATA7 of
the circuit shown in Figure 11. The timing parameters given in Table 6 also
apply to Figure 13.
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1

Figure 13. Passive Parallel Asynchronous Timing Waveforms Using nRS &
DATA7
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The circuit in Figure 11 takes advantage of the architecture of a micro-
controller host. Figure 14 shows an alternative to this circuit, in which a
CPU serves as the intelligent host and the FLEX 8000 device is treated more
as a memory than as a port. The nWS and nRS inputs to the FLEX 8000
device are driven by the CPU’s memory read/write control pins; the
DATA[7..0] inputs to the FLEX 8000 device are driven directly by the
system data bus. As in Figure 11, the nSTATUS and nCONFIG control
signals must be driven by an intelligent I/O port, but the CS and nCS chip
select signals are decoded from the address bus and not driven from an
I/0 port on the CPU. This address decoding scheme allows the CPU to
write to the FLEX 8000 device as a memory. A small programmable logic
device, such as the Altera EPM7032, is ideal for quickly decoding a wide
address and selecting the FLEX 8000 device.

PPA configuration is useful when multiple FLEX 8000 devices are
configured simultaneously. The CPU reads a byte of configuration data
from the disk or from memory, and then writes it to the FLEX 8000 device.
The CPU then polls the RDYnBUSY signal (or the DATA7 pin via the nRS
input) to determine when another data byte can be written. Timing for this
circuit is identical to the timing shown in Figure 13, although tggy;, the
minimum chip select delay before the rising edge of nwWS, must increase to
account for the time required to decode the address.
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Figure 14. Passive Parallel Asynchronous Device Configuration with Address
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The configuration process is generally controlled with a precise order of
steps, so the timing constraints are minimal. The following steps show the
typical control sequence executed by the CPU:

1.
2.

3.

Pull the nCONFIG pin to GND, hold it for 10 us, then pull it up to V.
Read the next byte of configuration data from an EPROM or a mass
storage device such as a hard disk.

Generate the address of the FLEX 8000 device.

Perform a memory write cycle to the FLEX 8000 device address using
the stored configuration data byte.

Poll the RDYnBUSY signal. When it goes high, transfer the next byte of
configuration data by repeating steps 2 through 4.

Repeat steps 2 through 5 until the FLEX 8000 device pulls the
CONF_DONE net high, which indicates that configuration is complete.

Passive Serial Configuration

The passive serial (PS) configuration scheme uses an external controller to
configure the FLEX 8000 device with a serial bit-stream. The FLEX 8000
device is treated as a slave device with a 5-wire interface to the external
controller. The external controller can be one of the following:

O The MAX+PLUS 1I Programmer, used together with the PL-MPU

Master Programming Unit, an appropriate device adapter, and the
FLEX Download Cable.

An intelligent host such as a microcontroller or a CPU. This type of PS
configuration is similar to the PPA and PPS configuration schemes,
but uses a bit-wide serial data path instead of a byte-wide parallel data
path.

Altera Corporation
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[  The Altera BitBlaster, an RS-232-compatible serial download cable.
For information on using the BitBlaster for configuring FLEX 8000
devices, refer to the current BitBlaster Serial Download Cable Data Sheet.

Passive Serial Configuration with the FLEX Download Cable

Passive serial configuration with the FLEX Download Cable uses the
MAX+PLUS II Programmer and Altera programming hardware as the
external controller. The Altera FLEX Download Cable can connect any
Configuration EPROM programming adapter, which is installed on the
PL-MPU Master Programming Unit, to a single target FLEX 8000 device in
the prototype system. The FLEX Download Cable provides a 5-wire
connection between the FLEX 8000 device and the programming adapter.
Configuration data is taken from the SRAM Object File (.sof) generated
automatically during project compilation and downloaded by the
MAX+PLUS II Programmer. Once the device is configured, the
programming hardware is tri-stated and electrically removed from the
circuit. This type of ‘PS configuration allows you to perform multiple
design iterations rapidly.

Figure 15 shows how the FLEX Download Cable interfaces to the target
FLEX 8000 device. The 10-pin male header on the circuit board has two
rows of five pins, spaced on 0.1-inch centers, that connect to the

Figure 15. Passive Serial Device Configuration with the FLEX Download Cable
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configuration pins on the FLEX 8000 device. Standard 10-pin IDS-type
male headers are readily available to provide the target board connections.
A 10-pin female plug on one end of the FLEX Download Cable is connected
to the 10-pin male header on the circuit board; the other end of the FLEX
Download Cable is connected to a Configuration EPROM programming
adapter. See Figure 16. Timing for PS configuration is identical to the
timing for bit-wide PS configuration shown later in this application note.

Figure 16. FLEX Download Cable Signals & Positions
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When a FLEX 8000 device is configured via the FLEX Download Cable, the
DCLK, CONF_DONE, nCONFIG, DATAO, and nSTATUS pins on the cable are
connected directly to the pins of the same names on the FLEX 8000 device.
The vCC and GND pins must be tied to the system power planes. These VCC
and GND pins supply power to the optical isolation circuitry in the
programming adapter; they do not supply power to the target FLEX 8000
device. Refer to the current FLEX 8000 Programmable Logic Device Family
Data Sheet for device pin numbers.

The DCLK, CONF_DONE, nCONFIG, and nSTATUS pins on the FLEX 8000
device are dedicated configuration pins. Since they are not available as
user I/O pins, they do not require isolation from the rest of the circuit.
However, a system must include pull-up resistors that pull these pins up
to Vcc, as shown in Figure 15. These resistors allow you to remove the
FLEX Download Cable after configuration is complete without introducing
any noise from floating inputs.

The DATAQ pin is available as an I/ O pin during user-mode operation, and
may require isolation, depending on how it is used. During configuration,
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the DATAO pin on the FLEX 8000 device acts as an input, and is driven by
the programming hardware. If the DATAQ pin is an output pin during user
mode, the signal that it drives does not need to be buffered. However, if the
DATAO pin is an input or bidirectional pin during user mode, contention
may occur between the user-mode signal and the FLEX Download Cable
during configuration.

If the signal that drives the DATAQ pin during user mode is tri-stated
during configuration and initialization, no conflict occurs. However, if this
signal is active during configuration, the DATAQ input pin must be isolated
from the active source. You can isolate the DATAQ pin by inserting a tri-
state buffer between the DATAQ pin and the rest of the network that it
drives. This tri-state buffer must be controlled by external logic.

If you cannot use active isolation, placing a 550-Q resistor between the
user-mode signal and the DATAO pin should provide adequate isolation.
The FLEX Download Cable is driven by 12-mA drivers, which supply
sufficient current to mask any signals that may be present at the other end
of the resistor. Resistive isolation may not be suitable for very-high-speed
circuits. Actual in-circuit performance should be evaluated in the laboratory
to ensure that this isolation scheme does not affect other portions of the
circuit.

The no connect (N.C.) pins shown in Figure 16 are reserved, and should
not be tied to any data or power signals. The header should be placed as
close as possible to the FLEX 8000 device.

For additional information on passive serial configuration with the FLEX
Download Cable, refer to “Configuring a FLEX 8000 Device In-System
with MAX+PLUS II & the FLEX Download Cable” later in this application
note.

Bit-Wide Passive Serial Configuration

The passive serial configuration scheme provides a bit-wide passive
interface for device configuration. No handshaking is provided in any PS
configuration. Therefore, the FLEX 8000 device must be configured at
6 MHz or less. Figure 17 shows how a bit-wide PS configuration is
implemented. Data bits are presented on the DATAQ input, with the least
significant bit of each byte of data presented first. The DCLX is strobed with
a high pulse to latch the data. This serial data loading continues until the
CONF_DONE pin goes high, indicating that the device is fully configured.
The data source can be any source that the host can address.
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Figure 17. Bit-Wide Passive Serial Device Configuration
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Figure 18 shows the timing for bit-wide PS configuration.

Figure 18. Bit -Wide Passive Serial Timing Waveforms
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Table 7 gives the timing parameters for bit-wide PS configuration.
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In-Circuit
Reconfiguration

Table 7. Passive Serial Configuration Timing Parameters

Symbol Parameter Min | Max | Unit
tcrocp nCONFIG low to CONF_DONE low 1 us
tcrosT nCONFIG low to nSTATUS low 1 us
terg nCONFIG low pulse width 2 us
tstatus |nSTATUS low pulse width 25 us
terock nCONFIG high to first rising edge on DCLK 5 us
tpsu Data setup time before rising edge on DCLK 50 ns
ton Data hold time after rising edge on DCLK 0 ns
tey DCLK high time 80 ns
tcr DCLK low time 80 ns
tork DCLK period 160 ns
fmax DCLK maximum frequency 6 |MHz

After a FLEX 8000 device has entered the user mode, you can choose to
replace the configuration data pattern inside the device at any time. In this
process, called in-circuit reconfiguration, new configuration data is selected
using one of three methods, depending on the configuration scheme:

1 Ina passive configuration scheme, a different file can be downloaded
from a mass-storage system.

1 In the AS configuration scheme, multiple sets of configuration data
can be stored in one or more serial Configuration EPROMs. Each set of
data is used in succession.

J  In the APU and APD configuration schemes, new configuration data
is selected by externally multiplexing a different EPROM source onto
the data path or by providing offset address generation circuitry to
select a different page within the same EPROM.

Because the SRAM cells used to configure the functionality of the FLEX 8000
architecture are volatile, they can be reprogrammed without removing the
FLEX 8000 device from the circuit board.

The nCONFIG input controls device reconfiguration. In the active con-
figuration schemes shown in Figures 1, 3, and 4, the nCONFIG pin is tied to
Vcc to force the FLEX 8000 device to automatically configure itself at
system power-up. In the PPA and PPS configuration schemes, controlling
logic is used on the nCONFIG input to determine when the configuration
starts, as shown in Figures 9, 11, and 14. However, all configuration
schemes allow you to connect the nCONFIG pin to a port on an intelligent
host, which can be used to control the configuration process. If nCONFIG is
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Configuration
Control
Features

held low, the configuration process can be delayed as necessary. For
example, the nCONFIG pin can be held low during system initialization
and then pulled high when it is appropriate to configure the FLEX 8000
device.

At any time during system operation, regardless of the current state of the
FLEX 8000 device, the nCONFIG pin can be used to restart the configuration
process. When nCONFIG is driven low and then high again, the device
resets itself and prepares for configuration. In an active configuration
scheme, the FLEX 8000 device immediately starts retrieving data from the
external EPROM,; in a passive configuration scheme, it prepares to receive
the data from the intelligent host. An example of a reset pulse on nCONFIG
in an APU configuration scheme is shown in Figure 6 earlier in this
application note. This nCONFIG timing applies to all configuration schemes
whenever the device is reconfigured.

Alllatched and registered data in the device is lost during reconfiguration,
so any counter values or the current state of the device should be stored
either in the intelligent host’s storage system or in some external circuitry,
such as an Altera EPLD. The entire reconfiguration process requires about
100 ms. The system resumes normal operation after the FLEX 8000 device
releases the CONF_DONE pin, indicating that initialization is complete.

Within a FLEX 8000 device, the configuration and initialization processes
can be controlled with two types of built-in resources:

0 Device configuration option bits
O  Device configuration pins

This section provides detailed information on configuration option bits
and pins. The usage of various options and pins is discussed in the
descriptions of individual configuration schemes earlier in this application
note. Some configuration pins and options can also be used together to
provide additional configuration and initialization control.

Device Configuration Option Bits

FLEX 8000 devices have device configuration option bits that allow you to
control device behavior during configuration. Table 8 describes all
FLEX 8000 device option bits and their availability in different configuration
schemes. You can set these options on a device-by-device basis in the
MAX+PLUS II software with the FLEX 8000 Individual Device Options
dialog box. You can also enter global default device option settings for an
entire project with the FLEX 8000 Device Options dialog box.
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Table 8. FLEX 8000 Device Configuration Option Bits (Part 1 of 2)

source of the Clock.

Device | Configuration Option Usage Default Configuration Modified Configuration
Option Scheme (Option Off) (Option On)
User- All After a FLEX 8000 device is In the AS, APU, APD, and PPA | The user provides the Clock en
Supplied configured, it must be initialized configuration schemes, the the CLKUSR pin. This type of
Start-Up over the course of 10 Clock internal FLEX 8000 device Clock can be used to fully
Clock cycles. The user can choose the | oscillator supplies the initiali- synchronize initialization for

zation Clock.

In the PS and PPS configuration
schemes, the internal oscillator
is disabled, so external circuitry
must provide the initialization
Clock on the DCLK pin.

multiple FLEX 8000 devices.
The maximum user-supplied
Clock frequency is 6 MHz, and
the Clock should have a 50 %
duty cycle.

Auto-Restart | AS, APU, APD If a data error occurs when a The configuration process halts | Directs the device to automat-
Configuration FLEX 8000 device is configured and the user must externally ically restart the configuration
on Frame with an active configuration direct the device to restart the process. The nSTATUS pin is
Error scheme, the user can choose how | configuration process. If a driven and held low for 10 Clock
to restart the configuration. configuration error occurs, the cycles and is then released. The
nSTATUS pin is driven and held | nSTATUS pin subsequently pulls
low until the nCONFIG pinis up to Vg, indicating to any
externally pulled low and then external circuitry that the recon-
high again. figuration process has started.
AS In an AS configuration scheme, [ In an AS configuration scheme,
the external nCONFIG reset the nSTATUS reset pulse auto-
pulse resets the Configuration matically resets the Config-
EPROM if the nCONFIG pinon |uration EPROM if the nSTATUS
the FLEX 8000 device is tied to | pin on the FLEX 8000 device is
the Output Enable pin on the tied to the Output Enable pin on
Configuration EPROM. the Configuration EPROM.
Release All During configuration, the I/O pins | Directs the device to release the | Directs the device to release the
Clears on the device are tri-stated by an | Output Enable override on the | Clear signal on registered logic
Before Tri- Output Enable override. The user | tri-state buffer before releasing | cells and peripheral registers
States can choose the order in which the | the Clear signal on registered before releasing the Output
tri-states are released and the logic cells and peripheral reg- Enable override on the tri-state
registered logic cells and isters during initialization. buffer during initialization.
peripheral registers are cleared
during initialization.
Enable AS, APU, APD, | FLEX 8000 devices drive the Disables the DCLK pin when the | Enables the DCLK pin when the
DCLK PPA DCLK signal during configuration | device operates in user mode device operates in user mode
Output In in all active configuration schemes | after device configuration and after device configuration and
User Mode and the PPA configuration initialization have been initialization have been
scheme. The DCLK signal can completed. completed.
range from 2 to 6 MHz in
frequency. The user can choose
whether to enable the DCLK signal
during user mode. The duty cycle
and frequency of the DCLK signal
are not guaranteed.
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Table 8. FLEX 8000 Device Configuration Option Bits (Part 2 of 2)
Device | Configuration Option Usage Default Configuration Modified Configuration
Option Scheme (Option Off) (Option On)
Disable All The CONF_DONE pin, a bidirec- If the CONF_DONE pin does not | If the CONF_DONE pin does not
Start-Up tional open-drain pin, is held at go high within 10 Clock cycles | go high within 10 Clock cycles
Time-Out GND by the FLEX 8000 device after being released by the after being released by the
during configuration. Once device, the device drives the device, the device continues to
configuration is complete, the nSTATUS pin low at the end of | wait for CONF_DONE to go high.
CONF_DONE pin is released and the configuration cycle,
the FLEX 8000 device treats the | indicating an error condition. To delay initialization, the
pin as an input pin. In most appli- CONF_DONE node can be held
cations, the CONF_DONE pin is low externally after the
pulled up to V o via a 1.0-kQ FLEX 8000 device has released w
resistor. This low-to-high transition the CONF_DONE pin, if, for g
directs the FLEX 8000 device to example, the user wishes to LT
begin initialization. The user can control the time required for the S
enable or disable the time-out FLEX 8000 device to enter user =3
error checking that determines mode. =3
whether CONF_DONE goes high -
within 10 Clock cycles.
Enable All Enables post-configuration JTAG | JTAG boundary-scan testingis | JTAG boundary-scan testing is
JTAG boundary-scan testing supportin | not available. available on the four JTAG pins
Support FLEX 8000 devices that provide (TDI, TDO, T™S, and TCLK) after
JTAG circuitry. In the EPF8282, EPF8282V, device configuration has been
EPF8636, and EPF8820 completed.
devices, the four JTAG pins
(TDI, TDO, T™S, and TCLK) are
available as user I/O pins. In
EPF81500 devices, these four
pins are disabled.

Device Configuration Pins

FLEX 8000 devices include control pins that modify the sequence and
timing of the configuration and initialization processes, and provide a
variety of configuration options. Some configuration pins have the same
effect regardless of the selected configuration scheme; others are specific to
a particular configuration scheme. Table 9 summarizes the functionality of
each configuration pin.
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Table 9. Pin Functions (Part 1 of 2) Note (1)
Pin User | Configuration Pin Description
Name | Mode Scheme Type
nSP na All Input Serial/Parallel selection input. A low input selects a serial configuration
scheme; a high input selects a parallel configuration scheme.
MSEL1 n/a All Input 2-bit configuration scheme selection inputs that are used in conjunction with
MSELO nSP to select the configuration scheme. The bit patterns of nSP:MSEL1 : MSELO
are associated with the following configuration schemes:
000 = AS 100 = APU
001 = Reserved 101 =PPS
010=PS 110 = APD
011 = Reserved 111 =PPA
nSTATUS n/a All Bidirectional | Command mode status output. The FLEX 8000 device drives the nSTATUS pin
Open Drain | low immediately after power-up, then releases it within 100 ms. The nSTATUS
pin must be pulled up to V¢ with a 1.0-kQ resistor. If an error occurs during
configuration, nSTATUS is pulled low again by the FLEX 8000 device.
nCONFIG na All Input Configuration control input. A low input resets the FLEX 8000 device. A low-to-
high transition starts a configuration cycle.
CONF_DONE | n/a All Bidirectional | Status output. Driven low by the FLEX 8000 device during the configuration
Open Drain | process.
Input Status input. A high input directs the device to execute the initialization process
and enter user mode.
The CONF_DONE net must be pulled up to V o with a 1.0-kQ resistor.
The CONF_DONE pin may be actively driven low by an external source to delay
the FLEX 8000 device initialization process. This feature is useful when the
configuration process will be completed some time before actual operation is
necessary.
DCLK 2 AS Output Clock source for external PROM devices.
3 PPS, PS Input Clock input from external host.
nws /0 PPA Input Write Strobe input. A low-to-high transition causes the FLEX 8000 device to
latch a byte of data on the DATA([7..0] pins.
nRS /O PPA Input Read Strobe input. A low input directs the FLEX 8000 device to place the
RDYnBUSY signal on the DATA7 pin.
RDCLK /0 APD, APU Output Divide-by-8 of DCLK output. Used internally to serialize an 8-bit data stream in
the byte-wide APU or APD configuration scheme.
ncCs l{e] PPA Input Chip Select inputs. A low input on nCS and a high input on Cs selects a specific
cs FLEX 8000 device for configuration. If only one of the chip selects is used, the
other must be tied to its active level (e.g., nCs would be tied to GND).
RDYnBUSY /o PPA Output Ready output. A high output indicates that the FLEX 8000 device is ready to
accept another byte of data. A low output indicates that the device is not ready
to receive data.
CLKUSR /(o] All Input Optional user-supplied Clock input. Synchronizes the initialization process.
ADD17 to /O APD, APU Outputs Address outputs. Driven by the FLEX 8000 device to uniquely address up to
ADDO 256 Kbytes of external configuration memory devices.
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Table 9. Pin Functions (Part 2 of 2)

DATA7 to /O APD, APU, Inputs Data inputs. Byte-wide configuration data is presented to the FLEX 8000 device
DATAO PPA, PPS on all 8 data pins.
DATAQ AS, PS Input Data input. Bit-wide configuration data is presented to the FLEX 8000 device

DATA7 PPA Output In the PPA configuration scheme, the DATA7 pin presents the RDYnBUSY signal

on the DATAC pin.

after the device receives an nRsS strobe. Using the DATA7 pin may be more
convenient than using the RDYnBUSY output pin.

SDOUT /1O All Output Reserved configuration output. Drives out during command mode.

Notes:

(€]

@

©)]

The maximum number of dual-purpose configuration pins that can be used as I/O pins in user mode varies in
different configuration schemes:

AS: 3 pins APU: 29 pins APD: 29 pins

PS: 3 pins PPS: 10 pins PPA: 15pins

The internally generated DCLK signal that is used to configure FLEX 8000 devices with the AS, APU, APD, and PPA
configuration schemes is available during user-mode operation if the Enable DCLK Output in User Mode configuration
option bit is turned on. The DCLK signal can range from 2 to 6 MHz in frequency; the duty cycle and frequency are
not guaranteed.

An externally generated DCLK signal is used to configure FLEX 8000 devices with the PS and PPS configuration
schemes. After configuration has finished, the external host can continue to drive the DCLK signal during user-mode
operation.

Seven of the device pins are dedicated to the configuration process and
cannot be used as I/O pins in user mode. Other configuration pins are
dual-purpose pins that also can be used as I/O pins when the device
operates in user mode. You can choose whether to use each dual-purpose
pin as an1/O pin in user mode, as well as whether to force a dual-purpose
pin to tri-state (i.e., drive a high-impedance logic level).

You can specify these settings for each pin on a device-by-device basis in
MAX+PLUS II with the FLEX 8000 Individual Device Options dialog box.
You can also enter global default pin settings for an entire project with the
FLEX 8000 Device Options dialog box. Turning on the Reserve option for a
specified pin in either dialog box prevents the pin from being used as an
I/0 pin during user mode; turning on the Tri-State option forces the pin to
tri-state. A reserved pin should not be connected to any circuitry on the
target board unless it is also tri-stated. Otherwise, the reserved pin will
drive an unknown logic level that may cause logic contention with other
signals on the board.

The nSTATUS, nCONFIG, CONF_DONE, and CLKUSR device configuration
pins are available to monitor the configuration process and control how
the device loads data, initializes, and enters user-mode operation. These
pins can be used together with configuration option bits to provide
additional configuration and initialization control.
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nSTATUS Pin

The nSTATUS pin is an open-drain, bidirectional pin. When the FLEX 8000
device powers up, it pulls this pin low and then releases it within 100 ms.
During configuration, the nSTATUS pin can be polled externally to verify
that the FLEX 8000 device is being configured. If an error occurs during
configuration, the nSTATUS pin is pulled and held low. In addition, if an
external circuit pulls the nSTATUS pin low during either command-mode
or user-mode operation, the FLEX 8000 device senses an error condition.
After the pin is pulled low, configuration must be restarted.

Configuration is restarted with a high-low-high pulse on the nCONF IG pin.
As an alternative, if the Auto-Restart Configuration on Frame Error option bit
is turned on, the FLEX 8000 device can restart the configuration
automatically when an error is detected. If this option bit is turned on, the
nSTATUS pin is pulled low for a few microseconds and then released,
indicating that the reconfiguration cycle has started. See Figure 3 earlier in
this application note for an example of an AS configuration scheme that
supports auto-reconfiguration.

If Vc falls below an acceptable level during user-mode operation, the
nSTATUS pin is pulled and held low, indicating an error condition. See
“Configuration Reliability” later in this application note for more details.

nCONFIG Pin

The nCONFIG pin is a dedicated input that is used to start a configuration
cycle. In most applications, the nCONFIG pin is tied to V-, directing the
FLEX 8000 device either to immediately start configuration in an active
configuration scheme, or to prepare immediately for configuration in a
passive configuration scheme.

When the nCONFIG pin is held at GND, the FLEX 8000 device is reset and
ready to start configuration. Configuration begins only after the pin is
pulled up to Vcc. The nCONFIG pin can thus be held low to delay the
configuration process and thus prevent data from loading until the desired
time.

If an application requires a FLEX 8000 device to be reconfigured after
system power-up, the nCONF IG pin must be tied to some external intelligent
circuitry that monitors and controls that configuration process, as described
in “In-Circuit Reconfiguration” earlier in this application note.
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CONF_DONE Pin

The CONF_DONE pin is an open-drain, bidirectional pin that reflects the
configuration status. When a FLEX 8000 device is ready to begin loading
data, the CONF_DONE pin is pulled to GND and remains at GND while the
data is loading, indicating that the FLEX 8000 device is being configured.
After the last configuration data byte has been read, the CONF_DONE pin is
released and pulled to V¢ by an external pull-up resistor, indicating that
configuration is finished. The FLEX 8000 device interprets this low-to-high
transition on the CONF_DONE signal as the command to initialize and enter
the user mode.

If the CONF_DONE pin does not pull up to V¢ within ten Clock cycles of
the final configuration data byte, the FLEX 8000 device detects an error
condition, aborts the initialization process, and drives and holds the
nSTATUS pin low. If the nSTATUS pin is low, it indicates either that an
error has occurred in the application circuit, or that the configuration data-
stream is corrupt.

The CONF_DONE pin can also be used to control the initialization process.
You can disable error checking on the CONF_DONE net by turning on the
device’s Disable Start-Up Time-Out configuration option bit, so that the
failure of CONF_DONE to pull to V¢ does not cause an error condition. The
CONF_DONE network can then be driven by some external logic and held
low until initialization is desired.

CLKUSR Pin

The CLKUSR pin can coordinate the initialization of multiple FLEX 8000
devices or synchronize the configuration of a FLEX 8000 device with other
application logic in the system. In most applications, the FLEX 8000 device
uses its internal oscillator (available externally as DCLK) to complete the
initialization. After ten Clock cycles, the device enters user mode. You can
turn on the User-Supplied Start-Up Clock configuration option bit and
supply these ten Clock cycles on the CLKUSR pin to ensure that the device
enters the user mode precisely when desired. Since the internal oscillators
on all FLEX 8000 devices are not guaranteed to have the same frequency,
you can use the CLKUSR pin to synchronize multiple FLEX 8000 devices in
the same system.

The MAX+PLUS 1I software can generate four different types of con-
figuration files for FLEX 8000 devices, as shown in Table 10. During project
compilation, MAX+PLUS Il automatically generates a POF and an SOF for
each FLEX 8000 device. If necessary, you can generate a TTF or Hex File, as
well as different POF(s), after compilation with the Combine Programming
Files command (File menu) in the MAX+PLUS Il Programmer or Compiler.
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Table 10. FLEX 8000 Device Programming Files

File Type Filename File File Utilization
Extension | Format

SRAM Object File .sof Binary Downloaded directly into the FLEX 8000 device with the
MAX+PLUS Il Programmer using the FLEX 8000 Download
Cable and Altera programming hardware.

Programmer .pof Binary Programmed into an Altera Configuration EPROM. The POF

Obiject File contains the configuration data, as well as the header, CRC, and
pad bytes for configuring the FLEX 8000 device in an AS
configuration scheme.

Hexadecimal (Intel- .hex ASClI text | Programmed into an industry-standard parallel EPROM. The

Format) File Hex File contains the configuration data, as well as the header,
CRC, and pad bytes for programming a parallel EPROM that
configures a FLEX 8000 device in an APU or APD configuration
scheme.

Tabular Text File Atf ASCIl text | A comma-separated version of the Hex File, used as source

code in high-level programming languages. The TTF can be
included in the source code for an intelligent host that configures
the FLEX 8000 device in a PPA, PPS, or bit-wide PS config-
uration scheme. It can also be converted into an equivalent
binary format that is directly loaded (LSB first) into the

FLEX 8000 device.

Together, the

MAX+PLUS II Programmer and Altera programming

hardware provide the following capabilities:

0

A POF can be programmed into an Altera Configuration EPROM for
an AS configuration scheme.

An SOF can be downloaded via the FLEX Download Cable for in-
circuit PS configuration of a FLEX 8000 device.

For information on configuring FLEX 8000 devices with the BitBlaster,
refer to the current BitBlaster Serial Download Cable Data Sheet.

Programming & Configuration Files

This section provides information on the characteristics of each type of
configuration file. The process of creating different configuration files is
described in “Combining & Converting Programming Files” later in this
application note.
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SRAM Opbject File

The SRAM Object File (.sof) is used during passive serial configuration
when the data is downloaded directly into the FLEX 8000 device in-system
with the MAX+PLUS II Programmer, the FLEX Download Cable, and
Altera programming hardware. MAX+PLUS II automatically inserts the
necessary header, formatting, and synchronization bits into the data stream
when it downloads an SOF into a FLEX 8000 device. See “Configuring a
FLEX 8000 Device In-System with MAX+PLUS II & the FLEX Download
Cable” later in this application note for more information.

If configuration files are needed for other configuration schemes,
MAX+PLUS II uses the data in SOF(s) to generate the appropriate POF(s),
a TTF, or a Hex File.

Programmer Object File

The Programmer Object File (.pof) is used to program Altera Configuration
EPROMs for an AS configuration scheme. MAX+PLUS II automatically
generates a POF for every FLEX 8000 device in a project. In a multi-device
project, each FLEX 8000 device has a dedicated Configuration EPROM.
(Two POFs are generated and two Configuration EPROMs are required for
an EPF81500 device.) MAX+PLUS II selects the appropriate Configuration
EPROM to most efficiently store the data for each FLEX 8000 device.

Hexadecimal (Intel-Format) File

The Hexadecimal File (.hex) is an ASCII file in the Intel Hex format. This
file contains the configuration and formatting data for an industry-standard
byte-wide parallel EPROM that is used to configure a FLEX 8000 device in
an APU or APD configuration scheme. The data in the Hex File is interpreted
by the programming software when it is programmed into a parallel
EPROM.

The usual base address for FLEX 8000 configuration data is the origin of
the EPROM. In some applications, the origin of the EPROM is required by
other system resources, so some offset is necessary. In an APU configuration
scheme, the FLEX 8000 device generates ascending addresses starting at
00000H; in an APD configuration scheme, it generates descending addresses
starting at 3FFFFH. The FLEX 8000 device provides these base addresses
for the configuration data during configuration, but any needed offset
address must be generated externally, as shown earlier in Figure 7. The
APU scheme is appropriate if the FLEX 8000 configuration data can be
stored at the beginning of an EPROM or at some known offset in an
EPROM larger than 256 Kbytes. The APD scheme is appropriate if the
FLEX 8000 configuration data is placed in an EPROM in which the low
addresses are not available (as shown in Figure 8), or in an EPROM that
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also stores other information that is expected to increase as an application
evolves.

Tabular Text File

The Tabular Text File (.ttf) is a tabular ASCII file that provides a comma-
separated version of the configuration data for the PPA, PPS, and bit-wide
PS configuration schemes. In some applications, the storage device that
contains the FLEX 8000 configuration data is neither dedicated to nor
connected directly to the FLEX 8000 device. For example, an EPROM can
also contain executable code for a system (e.g., BIOS routines) and other
data. The TTF allows you to include the FLEX 8000 configuration data as
part of the source code for the intelligent host (using “include” or “source”
commands). The host can access this data from an EPROM or a mass-
storage device and load it into the FLEX 8000 device.

A TTF can be imported into nearly any Assembly Language or high-level
language compiler. Consult the documentation for your compiler or
assembler for information on including other source files.

If you do not include the TTF in the source code for an intelligent host, the
file’s comma-separated ASCII representation of the binary data must be
converted into its equivalent 8-bit binary format (e.g., 85 would become
01010101) before it is loaded into the FLEX 8000 device. Data must be
stored so that the least significant bit (LSB) of each byte of data is loaded
first. The Altera Applications bulletin board service (BBS) provides the
ttf2rbf conversion utility for this purpose. The converted binary image can
be stored on a mass storage device. The intelligent host can then read data
from the binary file and load it into the FLEX 8000 device. You can also use
the intelligent host to perform real-time conversion during configuration.
In the PPA and PPS configuration schemes, the FLEX 8000 device receives
its information in parallel from the data bus, a data port on the CPU, or
some other byte-wide channel. In the bit-wide PS configuration scheme,
the data is shifted in serially.

Programming a Configuration EPROM

You can program Altera Configuration EPROMs with MAX+PLUS II, the
PL-MPU Master Programming Unit, and the appropriate Configuration
EPROM programming adapter. The PLM]J1213 adapter programs
Configuration EPROMs in 8-pin plastic dual in-line packages (PDIP) and
20-pin plastic J-lead chip carrier (PLCC) packages; the PLMT1064 adapter
programs Configuration EPROMs in 32-pin thin quad flat pack (TQFP)
adapters.
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To program an Altera Configuration EPROM:

1. Choose the Programmer command (MAX+PLUS Il menu) to open the
Programmer window.

2. By default, the Programmer loads the POF for the current project. If
necessary, load a different POF with the Select Programming File
command (File menu). The appropriate device for the current
programming file is displayed in the Device field.

3. Insertablank Configuration EPROM into the 8-pin DIP, 20-pin J-lead,
or 32-pin QFP socket on the programming adapter. The socket for the
FLEX 8000 device (if any) must be empty.

4. Choose the Program button.

After successful programming, you can place the Configuration EPROM
on the target board to configure a FLEX 8000 device in the AS configuration
scheme.

Configuring a FLEX 8000 Device In-System with MAX+PLUS Il & the
FLEX Download Cable

To configure a FLEX 8000 device with the FLEX Download Cable:

1. Connect the FLEX Download Cable to the 9-pin D-type connector on a
Configuration EPROM programming adapter.

2. Connect the other end of the FLEX Download Cable to the 10-pin male
header on the target board.

3. Start MAX+PLUS II and choose the Programmer command
(MAX+PLUS Il menu) to open the Programmer window.

4. Choose the Select Programming File command (File menu).

Select the desired SOF filename in the Files box or type a name in the

File Name box. If you choose a programming file from another project,

you are asked if you wish to change the current project name.

Choose OK.

Choose the Program button to configure the device.

W

6.
7.

After the device is configured and initialized, it enters user mode and
operates as a logic device. The FLEX Download Cable is electrically removed
from the circuit and does not influence circuit operation. You can also
physically disconnect the FLEX Download Cable without disturbing the
FLEX 8000 configuration data or device operation.

Combining & Converting Programming Files

MAX+PLUS II automatically generates a POF and an SOF for every
FLEX 8000 device in a project, as described earlier in this application note.
The POF can be programmed into an Altera Configuration EPROM used
in an AS configuration scheme; by default, each FLEX 8000 device has one
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dedicated Configuration EPROM (two Configuration EPROMs are required
for an EPF81500 device).

You may wish to combine and/or convert the automatically generated
SOFs into a different format for the following purposes:

a

a

To use a configuration scheme other than AS. You must convert an
SOF into a Hex File or a TTF for programming a parallel EPROM,
BIOS EPROM, or another data source.

To combine multiple sets of configuration data to be used for in-circuit
reconfiguration in any configuration scheme.

To convert an SOF into a Hex File or TTF:

1.

2.

Refer to Table 2 to calculate the required data space in a parallel or
serial data source.

Choose the Combine Programming Files command (File menu) in
the MAX+PLUS II Programmer or Compiler.

Select the desired SOF name in the Files box or type a name in the File
Name box under Input Files. Choose the Add button to add it to the
Selected Files box.

Specify information for the desired configuration scheme:

—  If the FLEX 8000 device will be configured with a parallel EPROM
in the APU or APD configuration scheme, select .hex (Single-
Device) in the File Format drop-down list box under Output File.

In addition, if the FLEX 8000 configuration data will not start at
the origin of the EPROM, specify the base address for the
configuration data in the Address box under Input Files. Choose
Up or Down under Count to specify whether the FLEX 8000 device
should count up or down. The counting sequence can be either
ascending (00000H to 3FFFFH) for APU configuration or
descending (3FFFFH to 00000H) for APD configuration, as
described in “Hexadecimal (Intel-Format) File” earlier in this
application note.

or:

- If the FLEX 8000 device will be configured with a PPA, PPS, or
bit-wide PS scheme, select .ttf (Sequential) in the File Format drop-
down list box under Output File. The TTF can be incorporated as
source code for a data structure in a high-level programming
language. Otherwise, the TTF data must be converted into its
equivalent 8-bit binary format before it is loaded into the
FLEX 8000 device, as described in “Tabular Text File” earlier in
this application note.
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Configuration
Reliability

5. The default name for the output file is the current project name plus
the extension .hex or .ttf. To give a different name to the file, type a
name in the File Name box under Output File.

6. Choose OK to generate the Hex File or TTF. The file is placed in the
current project directory.

You can use in-circuit reconfiguration to load multiple sets of configuration
data into the FLEX 8000 device in a system. The following procedure
describes how to combine SOFs for in-circuit reconfiguration of a FLEX 8000
device.

To combine SOFs for in-circuit reconfiguration with multiple sets of
configuration data:

1. Refer to Table 2 to calculate the required data space in a parallel or
serial data source.

2. Choose the Combine Programming Files command (File menu) in
the MAX+PLUS II Programmer or Compiler.

3. Select the SOF with the first set of configuration data and choose the

Add button to add it to the Selected Files box.

Repeat step 3 until all SOFs have been added to the Selected Files box.

Arrange the selected files in the order in which the different sets of

configuration data will be used by selecting each SOF filename and

choosing the Up or Down button under Order.

6. Specify information for the desired configuration scheme, select the
output filename, and choose OK. The default name for the output file
is the current project name plus the extension .hex, .ttf, or .pof. To give
a different name to the file, type a name in the File Name box under
Output File. If multiple POFs are generated, they are uniquely identified
by a sequence number appended to the filename (e.g., the first is
device.pof, the second is devicel.pof, etc.). You can specify an output
filename that has less than the maximum of eight characters to leave
room for the numerical index; otherwise, the last character(s) are
truncated to include it.

91

The FLEX architecture has been designed to minimize the effects of power
supply and data noise in a system, and to ensure that the configuration
data is not corrupted during configuration or normal user-mode operation.
A number of circuit design features are provided to ensure the highest
possible level of reliability from this SRAM technology.

Cyclic redundancy check (CRC) circuitry is used to validate every data
frame (i.e., sequence of data bits) as it is loaded into the FLEX 8000 device.
If the CRC generated by the FLEX 8000 device does not match the data
stored in the data stream, the configuration process is halted, and the
nSTATUS pin is pulled and held low to indicate an error condition. This
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CRC circuitry ensures that noisy systems will not cause errors that yield an
incorrect or incomplete configuration.

The FLEX architecture also provides a very high level of reliability in low-
voltage brown-out conditions. The SRAM cells require a certain V¢ level
to maintain accurate data. Since this voltage threshold is significantly
lower than that required to activate the power-on reset (POR) circuitry in
the FLEX 8000 device, the FLEX 8000 device stops operating if the V¢
starts to fail, and indicates an operation error by pulling and holding the
nSTATUS pin low. The device must then be reconfigured before it can
resume operation as a logic device. In active configuration schemes, recon-
figuration begins as soon as V¢ returns to an acceptable level if the
NCONFIG pin is tied to Vcc. Otherwise, the host system must start the
reconfiguration process.

These device features ensure that FLEX 8000 devices have the highest
possible reliability in a wide variety of environments, and provide the
same high level of system reliability that exists in other families of Altera
programmable logic devices.
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|ntr0d ucti on The architecture of Altera’s Flexible Logic Element MatriX (FLEX) devices
supports several methods for configuring multiple FLEX 8000 devices in a
single system. You can configure FLEX 8000 devices either individually or
together in a parallel or serial fashion.

This application note describes how to create configuration circuits for
multiple FLEX 8000 devices. It provides sample schematics, required
configuration option bit and configuration pin settings, programming file
information, and, where appropriate, timing information. The following
topics are discussed:

z
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Choosing a configuration circuit

Common features in multi-device configuration circuits
Multi-Device Sequential Active Serial (MD-SAS) configuration
Multi-Device Active Serial Bit-Slice (MD-ASB) configuration
Multi-Device Passive Serial Bit-Slice (MD-PSB) configuration
Multi-Device Passive Parallel Synchronous (MD-PPS) configuration
Multi-Device Passive Parallel Asynchronous (MD-PPA) configuration
Multi-Device Active Parallel Hybrid (MD-APH) configuration

ool ooo

This application note must be used together with Application Note 33
(Configuring FLEX 8000 Devices), which provides detailed information on
FLEX 8000 device operating modes, data-space sizes, in-circuit
reconfiguration, configuration option bits, configuration pins, programming
file generation, and single-device configuration. Refer also to the FLEX 8000
Programmable Logic Device Family and Configuration EPROMs for FLEX 8000
Devices data sheets for additional details on device architecture.

Choosing a The best type of configuration for a particular system depends on a variety

. . of factors, including the existing resources in the system, the number of
con"gurahﬂn devices to be configured, the desired configuration time, reconfiguration
Circuit requirements, and the need to periodically load new configuration data.

Table 1 summarizes the characteristics of the multi-device configuration
circuits supported by the FLEX 8000 architecture.
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Table 1. FLEX 8000 Configuration Schemes

Configuration | Intelligent Auto- Concurrent | Simultaneous | Configuration Max. Programming
Circuit Host Reconfiguration Device Device Data Location | Devices File(s)
Required Available Configuration | Initialization Configured

Multi-Device No No No No Configuration Unlimited Programmer
Sequential EPROM(s) Object File
Active Serial (.pof)
(MD-SAS)

Multi-Device No Yes Yes Yes Parallel EPROM | 8 Hexadecimal
Active Serial (Intel-format)
Bit-Slice File (.hex)
(MD-ASB)

Multi-Device Yes No Yes Yes Data file(s) 8 perdata | Tabular Text
Passive Serial file File (.ttf)
Bit-Slice

(MD-PSB)

Multi-Device Yes No Yes Yes Data files Unlimited Tabular Text
Passive Parallel Note (1) File (.ttf)
Synchronous

(MD-PPS)

Multi-Device Yes No Yes Yes Data files Unlimited Tabular Text
Passive Parallel Note (2) File (.ttf)
Asynchronous

(MD-PPA)

Multi-Device No No No No Parallel EPROM |9 Hexadecimal
Active Parallel (Intel-format)
Hybrid File (.hex)
(MD-APH)
Notes:

1)
@)

One FLEX 8000 device can be configured for each unique DCLK signal generated by an intelligent host.
One FLEX 8000 device can be configured for each uniquely decodable address.

This application note describes each type of configuration circuit in detail,
the configuration scheme used for each device, the connections between
devices, and how to generate the configuration data. The term configuration
scheme refers to the bit pattern of the nSP, mSEL1, and mSELO selection
bits—and the attendant behavior—of a single, specific FLEX 8000 device.
In contrast, the term configuration circuit refers to a set of multiple FLEX 8000
devices, the configuration schemes used for each FLEX 8000 device, and
the connections between the devices. In a multi-device system, each
FLEX 8000 device in the configuration circuit can use a different
configuration scheme.
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Common
Features in
Multi-Device
Configuration
Circuits

Multi-device configuration circuits have several common characteristics.
The following features have similar purposes in each configuration circuit:

[ Configuration Clock frequency
0 nCONFIG pin

O nSTATUS pin

1 CONF_DONE pin

For more detailed information on these items, refer to Application Note 33
(Configuring FLEX 8000 Devices).

Configuration Clock Frequency

The Clock source for all active configuration schemes is an internal oscillator
in the FLEX 8000 device, which typically operates in the range 2 MHz to
6 MHz. In all passive configuration schemes, an external controller guides
the device configuration at a maximum frequency of 2 MHz.

nCONFIG Pin

In most configuration circuits, the nCONFIG input pin on a FLEX 8000
device is connected to V. At system power-up, this connection directs
the device to immediately start configuration (in an active configuration
scheme) or to prepare for immediate configuration (in a passive config-
uration scheme).

If an application requires a delay in the FLEX 8000 device configuration,
the nCONFIG pin must be tied to external logic. A high-to-low transition on
nCONFIG resets the FLEX 8000 device, and a subsequent low-to-high

PSP S TSN AT IR~ U & SR ac
LLdIISILIOIL Stalld LI CUL ulgulduuu PI 0CESS.

nSTATUS Pin

In most configuration circuits, the bidirectional nSTATUS pin on a FLEX 8000
device is connected to an intelligent host or to external support logic. If an
error occurs during device configuration, this pin is pulled and held low.

CONF_DONE Pin

In most configuration circuits, the bidirectional CONF_DONE pins on each
FLEX 8000 device are connected to the same net. The FLEX 8000 devices in
the circuit hold the CONF_DONE net low until all devices are fully configured,
thereby allowing devices of different sizes to be configured and initialized
simultaneously. The CONF_DONE net is also connected to the DONE input of
the external support logic or an intelligent host to indicate that configuration
has been successful.

Altera Corporation

Page 73 l

(72
=
I
[x]
=
«
Y
=
=
S
@

—
(1]
(x)
-
-
[x]
Q0




l Configuring Multiple FLEX 8000 Devices Application Note 38 l

i

Multi-Device
Sequential
Active Serial
(MD-SAS)
Configuration

In an MD-SAS configuration circuit, the configuration data is stored in one
or more Altera serial Configuration EPROMs. The first FLEX 8000 device
controls the configuration by generating a DCLK signal that clocks data out
from the Configuration EPROMs. The CONF_DONE pin on the first FLEX 8000
device is connected to the nCONFIG pin of the next FLEX 8000 device, and
the connection is repeated through the entire configuration circuit. Once
the first FLEX 8000 device is fully configured, its CONF_DONE pin is pulled
up to V¢ via an external pull-up resistor. This low-to-high transition on
the nCONFIG input to the next FLEX 8000 device directs it to begin
configuration.

Figure 1 shows three FLEX 8000 devices and two Configuration EPROMs
in an MD-SAS configuration circuit. By default, each FLEX 8000 device in a
project has one dedicated Configuration EPROM. In this example, however,
the configuration data for the three FLEX 8000 devices has been combined
and programmed into two Configuration EPROMs. In some circuits, you
may need more Configuration EPROMs than FLEX 8000 devices to store
the configuration data (e.g., three EPC1213 Configuration EPROMs are
required to configure two EPF81500 devices). When you combine the
programming files for the Configuration EPROMs, the MAX+PLUS 1I
software automatically calculates the minimum number of Configuration
EPROMs needed to support a multi-device configuration circuit.
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Figure 1. Multi-Device Sequential Active Serial (MD-SAS) Configuration Circuit
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The nCs pin on the first Configuration EPROM must be connected to the
CONF_DONE output of the last FLEX 8000 device in the circuit to ensure
that all Configuration EPROMs are disabled after the last FLEX 8000
device is completely configured. In addition, if the configuration circuit
includes more than six devices, the DCLK and DATAO nets should have
external active buffering to maintain the signal integrity. Table 2 summarizes
the configuration parameters for MD-SAS configuration circuits.
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Table 2. MD-SAS Configuration Parameters

Parameter Description

Configuration scheme | First FLEX 8000 device: Active Serial (nSP:mSEL1:mSELO = 000)
Subsequent FLEX 8000 device(s):  Passive Serial (nSP:mSEL1:mSELO = 010)

Non-default device For the first FLEX 8000 device only, turn on the Enable DCLK Output in User Mode
option & configuration |option in the FLEX 8000 Individual Device Options dialog box. DCLX is inactive in

pin settings subsequent FLEX 8000 devices, which use the Passive Serial configuration scheme.
Device configuration/ | Configuration data is stored in one or more POFs, depending on the number of
programming file Configuration EPROMs required to configure the FLEX 8000 devices. POFs are

generated by combining the SRAM Object Files (.sof) from all FLEX 8000 devices in
the serial order in which they are configured on the board. Select .pof (Sequential) in
the File Format drop-down list box in the Combine Programming Files dialog box
when generating POFs for MD-SAS configuration.

Reconfiguration on No automatic reconfiguration is available. The nSTATUS pin is connected to V ¢

error separately on each FLEX 8000 device. Each of the nSTATUS nets must be monitored
for a high-to-low transition, which indicates that an error has occurred during
configuration. The nCONFIG pin on the first FLEX 8000 device must be pulled low and
then released to initiate a reconfiguration cycle.

Multi-Device In an MD-ASB configuration circuit, the configuration data is stored in a
. . paralle] EPROM. The EPROM must have a maximum access time of 100 ns.
Active Serial Each bit in the EPROM data word (up to 8 bits wide) configures a different
Bit-Slice FLEX 8000 device. Data in the EPROM is presented as parallel streams of
serial configuration data. A standard byte-wide EPROM can configure up

(M D'ASB) to eight FLEX 8000 devices simultaneously, with each data pin in the
Confi g uration EPROM data word connected to the DATAO pin of the corresponding

FLEX 8000 device in the configuration circuit.

Figure 2 shows an MD-ASB circuit in which two FLEX 8000 devices are
configured with a parallel EPROM. A support PLD such as the EPM7032
device translates the DCLXK signals generated by the first FLEX 8000 device
into sequential addresses for the parallel EPROM. This support device
must contain an 18-bit counter and other logic to translate nSTATUS into a
global Reset signal.
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Figure 2. Multi-Device Active Serial Bit-Slice (MD-ASB) Configuration Circuit
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Figure 3 shows an Altera Hardware Description Language (AHDL) Text
Design File (.tdf) that implements the features required in an EPM7032

support device.
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Figure 3. AHDL Text Design File for EPM7032 Support Device (asbpld.tdf)

DESIGN IS asbpld
DEVICE IS EPM7032LC44;

SUBDESIGN asbpld
(
clk, done, nreset : INPUT;
cs, add[17..0] : OUTPUT;
)

VARIABLE
count [17..0] : DFF;
atrifl7..0] : TRI;

BEGIN
add[] = atril];
atril] = count[];
atril].oe = global (!done) ;
cs = l!done;

count[].clk = global (clk);
count[].clrn = global (nreset);

count[].d = count[].q + 1;

END;

Table 3 summarizes the configuration parameters for MD-ASB
configuration circuits.
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Table 3. MD-ASB Configuration Parameters

Parameter Description

Configuration scheme | First FLEX 8000 device: Active Serial  (nSP:mSEL1:mSELO = 000)
Subsequent FLEX 8000 device(s):  Passive Serial (nSP:mSEL1:mSELO = 010)
Non-default device For all FLEX 8000 devices, turn on the Disable Start-Up Time-Out option in the
option & configuration |FLEX 8000 Device Options dialog box. For the first FLEX 8000 device, turn on the
pin settings Auto-Restart Configuration on Frame Error option in the FLEX 8000 Individual
Device Options dialog box.

Device configuration/ | Configuration data is stored in a single Hex File, generated by combining the SOFs
programming file from all FLEX 8000 devices in the parallel order in which they are configured on the

board. Select .hex (Bit-Slice) in the File Format drop-down list box in the Combine -‘g: -

Programming Files dialog box when generating Hex Files for MD-ASB configuration. o 2

The first file listed in the Combine Programming Files dialog box corresponds to § 3

DATAO on the EPROM, the second corresponds to DATA1, and so on. g. §
Reconfiguration on The circuit in Figure 2 supports automatic reconfiguration on error. A FLEX 8000 A
error device drives a high-low-high pulse on the nSTATUS signal whenever a configuration

error (e.g., bad data) or an operation error (e.g., V ¢ failure) occurs. This pulse resets
the counter in the EPM7032 support PLD and restarts the configuration process.

Multi-Device In the MD-PSB configuration circuit, the configuration data is typically
. . stored in a data file and presented to the FLEX 8000 devices by an intelligent
Passive Serial host. The data in the configuration file incorporates parallel streams of

Bit-Slice serial configuration data. Each bit in the 8-bit-wide configuration file

provides configuration data to the DATAO pin of a separate FLEX 8000

(MD'PSB) device in the configuration circuit. After it has presented a data word on

H : the data bus, the intelligent host sends a DCLK pulse to all FLEX 8000
con" gu ratl on devices, instructing them to latch the data.

Figure 4 shows two FLEX 8000 devices that are configured by an intelligent
host in an MD-PSB configuration circuit.
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Figure 4. Multi-Device Passive Serial Bit-Slice (MD-PSB) Configuration Circuit
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Figure 5 shows the sequence of control signals that the intelligent host
must generate to correctly implement the circuit. A single configuration
file can provide the data to simultaneously configure up to eight FLEX 8000
devices; multiple files can be used to extend an MD-PSB configuration
circuit without limit.

Figure 5. Multi-Device Passive Serial Bit-Slice (MD-PSB) Configuration Waveforms
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DATA[7..0] X DataByte0 X DataByte1 X DataByte2 X DataByted X
DCLK 1 1 [ 1
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Table 4 summarizes the configuration parameters for MD-PSB configuration
circuits.

Table 4. MD-PSB Configuration Parameters

Parameter

Description

Configuration scheme

First FLEX 8000 device:
Subsequent FLEX 8000 device(s):

Passive Serial (nSP:mSEL1:mSELO = 010)
Passive Serial (nSP:mSEL1:mSELO = 010)

Non-default device
option & configuration
pin settings

If the FLEX 8000 device uses DATAO during user mode, you must turn off the Reserve
option for DATAO for all FLEX 8000 devices in the FLEX 8000 Device Options dialog
box. For all FLEX 8000 devices, turn on the Disable Start-Up Time-Out option in the
FLEX 8000 Device Options dialog box.

Device configuration/
programming file

Configuration data is stored in a single TTF, generated by combining the SOFs from
all FLEX 8000 devices in the parallel order in which they are configured on the board.
The first file listed corresponds to the least significant bit (LSB) of the TTF. Select .ttf
(Bit-Slice) from the File Format drop-down list box in the Combine Programming
Files dialog box when generating TTFs for MS-PSB configuration. A TTF can contain
up to eight parallel configuration bit-streams; the data in the file must be converted
from ASCII to binary format before being presented to the FLEX 8000 devices during
configuration. The Altera Applications BBS provides the ttf2rbf conversion utility for
this purpose.

Reconfiguration on
error

No automatic reconfiguration is available. The circuit shown in Figure 4 shows an input
to the intelligent host called ERROR, which must be monitored for a high-to-low
transition on the nSTATUS signal. This transition indicates an error during configuration
or user-mode operation. The intelligent host must respond by pulling nCONFIG low to
initiate a reconfiguration cycle, then releasing it.

Passive Parallel

Synchronous
(MD-PPS)
Configuration

In an MD-PPS configuration circuit, the configuration data is typically
stored in data files on a hard disk. An intelligent host presents the data to
the FLEX 8000 devices in a parallel format on an 8-bit-wide data bus. Each
FLEX 8000 device in the circuit can be configured sequentially, so that each
successive device is completely configured before the next device starts
configuration. Alternatively, the configuration can be interleaved, with
each FLEX 8000 device receiving one data byte in rotation. Each FLEX 8000
device requires a separate DCLK control input from the intelligent host,
and must be clocked eight times for each byte at a frequency up to 2 MHz.

Figure 6 shows an MD-PPS configuration circuit in which an intelligent
host configures two FLEX 8000 devices. This configuration circuit can be
extended to include one FLEX 8000 device for each unique DCLK signal
generated by the intelligent host.

Ddtera Corporation
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Figure 6. Multi-Device Passive Parallel Synchronous (MD-PPS) Configuration Circuit
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Figure 7 shows the sequence of control signals necessary for both interleaved
and non-interleaved MD-PPS configuration.
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Figure 7. Multi-Device Passive Parallel Synchronous (MD-PPS) Configuration Waveforms
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Non-Interleaved Configuration
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Table 5 summarizes the configuration parameters for MD-PPS configuration
circuits.
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Table 5. MD-PPS Configuration Parameters

Parameter

Description

Configuration scheme

First FLEX 8000 device:

Passive Parallel Synchronous (nSP:mSEL1:mSELO = 101)
Subsequent FLEX 8000 device(s):

Passive Parallel Synchronous (nSP:mSEL1:mSELO = 101)

Non-default device
option & configuration
pin settings

If the FLEX 8000 device uses the data bus during user mode, you must turn off the
Reserve option for DATA[0..7] for all FLEX 8000 devices in the FLEX 8000 Device
Options dialog box. For all FLEX 8000 devices, turn on the Disable Start-Up Time-Out
option in the FLEX 8000 Device Options dialog box.

Device configuration/
programming file

Configuration data is stored in a separate TTF for each device. Select .tif (Sequential)
from the File Format drop-down list box in the Combine Programming Files dialog
box when generating TTFs for MD-PPS configuration. The TTF data must be
converted from ASCII to binary format before being presented to the FLEX 8000
devices during configuration. The Altera Applications BBS provides the ttf2rbf
conversion utility for this purpose.

Reconfiguration on
error

No automatic reconfiguration is available. The circuit in Figure 6 shows an input to the
intelligent host called ERROR, which must be monitored for a high-to-low transition on
the nSTATUS signal. This transition indicates an error during configuration or user-
mode operation. The intelligent host must respond by pulling nCONFIG low to initiate a
reconfiguration cycle, then releasing it.

Multi-Device

In the MD-PPA configuration circuit, the configuration data is typically
stored in data files on hard disk. An intelligent host presents the data to the

Passive Parallel rrex 8000 devices in a parallel format on an 8-bit-wide data bus. Each

Asynchronous
(MD-PPA)
Configuration

FLEX 8000 device in the circuit can be configured sequentially, so that each
successive device is completely configured before the next device starts
configuration. Alternatively, the configuration can be interleaved, with
each FLEX 8000 device receiving one data byte in rotation. If the data bus is
very fast, you may wish to use the interleaving method to take advantage
of the FLEX 8000 device’s 4-iis (250-kHz) minimum configuration time per
byte. Otherwise, sequential configuration may be more appropriate.

Each FLEX 8000 device is uniquely addressed by a decoder PLD. When the
intelligent host is ready to present a data byte to a FLEX 8000 device, the
host generates the corresponding address and the decoder PLD selects the
correct FLEX 8000 device using the nCS pin. The intelligent host then
provides a high-low-high pulse on nwWs, which directs the selected
FLEX 8000 device to latch the data. A high-low-high pulse on nRS directs
the addressed FLEX 8000 device to present the RDYnBUSY signal on the
DATA7 pin, which must be monitored to determine when the FLEX 8000
device is ready to receive another byte of data. The DATA7 pin on the
intelligent host must be tri-stated during the monitoring process.
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Figure 8 shows two FLEX 8000 devices, an intelligent host, and a decoder
PLD in an MD-PPA configuration circuit. This configuration circuit can be
extended to include one FLEX 8000 device for each uniquely decodable
address, with no upper limit to the number of devices.

Figure 8. Multi-Device Passive Parallel Asynchronous (MD-PPA) Configuration Circuit

V_O_C vcc
1kQ
VCC
FLEX 8000 %
Device 1 STk CPU/Host Decoder PLD
“q” INE_DONE 3 nws nCS0
uS [« > nRS nCs1 2
‘ « ADDIn..0] . @ ;I
DATA[7..0] | <= -2 o
P> DONE . s 3
P nRESET nCSn -
o2
| ADDI[1..0] =
n (7]
FLEX 8000
Device 2
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Figure 9 shows the sequence of control signals necessary for a
non-interleaved MD-PPA configuration circuit that uses the DATA7 pin for

status-checking.
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Figure 9. Multi-Device Passive Parallel Asynchronous (MD-PPA) Configuration Waveforms
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Table 6 summarizes the configuration parameters for MD-PPA
configuration circuits.
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Table 6. MD-PPA Configuration Parameters

Parameter

Description

Configuration scheme

First FLEX 8000 device:

Passive Parallel Asynchronous (nSp:mSEL1:mSELO = 111)
Subsequent FLEX 8000 device(s):

Passive Parallel Asynchronous (nSP:mSEL1:mSELO = 111)

Non-default device
option & configuration
pin settings

If the FLEX 8000 device uses the data bus during user mode, you must turn off the
Reserve option for DATA[0..7] for all FLEX 8000 devices in the FLEX 8000 Device
Options dialog box. For all FLEX 8000 devices, turn on the Disable Start-Up Time-Out
option in the FLEX 8000 Device Options dialog box.

Device configuration/
programming file

Configuration data is stored in a TTF for each device. Select .ttf (Sequential) from the
File Format drop-down list box in the Combine Programming Files dialog box when
generating TTFs for MD-PPA configuration. The TTF data must be converted from
ASCII to binary format before being presented to the FLEX 8000 devices during
configuration. The Altera Applications BBS provides the ttf2rbf conversion utility for
this purpose.

Reconfiguration on
error

No automatic reconfiguration is available. The circuit in Figure 8 shows an input to the
intelligent host called ERROR, which must be monitored for a high-to-low transition on
the nsTATUS signal. This transition indicates an error during configuration or user-
mode operation. The intelligent host must respond by pulling nCONFIG low to initiate a
reconfiguration cycle, then releasing it.

Multi-Device
Active Parallel
Hybrid
(MD-APH)
Configuration

In an MD-APH configuration circuit, two configuration data files are
stored in a parallel EPROM. The EPROM must have a maximum access
time of 100 ns. The first file is used to configure the first FLEX 8000 device
in an active parallel up (APU) configuration scheme. The second file
consists of serial bit-slice data that can configure up to eight additional
FLEX 8000 devices in a passive serial (PS) configuration scheme.

The design file for the first (actively configured) FLEX 8000 device must
contain a 20-bit counter and support logic for passively configuring
additional FLEX 8000 devices. This logic emulates the address generation
used in a single-device APU configuration. The bit-slice data is presented
to the passively configured FLEX 8000 devices as parallel streams of serial
configuration data. Each bit in the configuration data word (up to eight
bits wide) configures a separate FLEX 8000 device. The MD-APH
configuration support logic for the first FLEX 8000 device is available from
the Altera Applications bulletin board service (BBS) in the self-extracting
file md_aph.exe.

Figure 10 shows an MD-APH circuit in which a parallel EPROM configures
three FLEX 8000 devices.
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Figure 10. Multi-Device Active Parallel Hybrid (MD-APH) Configuration Circuit

vee vce vce
1kQ 1kQ
vCcC VvCC
FLEX 8000 % Parallel
Device 1 1k k@ EPROM
“q” DATA[7..0] =
oQ >
b 20
$| ADD[19..0]
P nCS

FLEX 8000
Device 2

FLEX 8000
Device 3

Yy

51 N iﬂ(ﬂ

GND GND

A byte-wide 256-Kbyte EPROM can configure up to nine EPF81188
FLEX 8000 devices. The first 32 Kbytes store the APU data for the first
FLEX 8000 device; the next 192 Kbytes contain the bit-slice configuration
data for the passively configured devices. See Figure 11. EPROMs of

{ Page 88

Altera Corporation |




Application Note 38

Configuring Multiple FLEX 8000 Devices

Figure 11. Multi-Device Active Parallel Hybrid (MD-APH) Data Storage
P,a ral]gl EP oM _— The Hex File contains

configuration data for
first FLEX 8000 device.

Starting Address _—~ 00000
for Active Parallel
Up Data

Offset Address for _—~ 1NN ¢ _ The Hex File contains

Serial Bit-Slice configuration data for up
Data to eight additional
FLEX 8000 devices.

[
-
@
[x]
=
[
-]
=
(=]
-
[}

different sizes can accommodate configuration data for FLEX 8000 devices
of different sizes.

The configuration support logic in the first FLEX 8000 device drives the
outputs ADD[19..0], CFG_START, and nCs; it uses the inputs CLK and
USR/nCFG. The address pins consist of the dual-purpose configuration
pins ADD[17..0] and two I/O pins ADD[19. .18]. After all passively
configured devices are fully configured and have entered user-mode
operation, multiplexers in the support logic release the ADD[19..0]
address pins on the first FLEX 8000 device for use as normal I/O pins. The
CFG_STRT signal synchronizes device configuration by driving the low-
high-low pulse on the nCONFIG inputs to the passively configured
FLEX 8000 devices.

The CLK input to the first FLEX 8000 device is tied to its DCLK output so
that the DCLK signal, which is not available internally, can drive the
support logic. The USR/nCFG input on the first FLEX 8000 device is tied to
the CONF_DONE net of all passively configured FLEX 8000 devices. Once
these devices are fully configured and have released CONF_DONE, the high
logic level on the USR/nCFG input to the first FLEX 8000 device turns off
the address counter, releasing the ADD[19..0] address pins for use as
1/0 pins during user-mode operation. This high logic level also causes the
first FLEX 8000 device to assert a high logic level on nCs, which disables
the EPROM, releases the DATA[7. . 0] pins on the FLEX 8000 device, and
latches CFG_STRT at V- to prevent erroneous reconfiguration.

The first FLEX 8000 device must enter user mode before the passively
configured FLEX 8000 devices so that its support logic can direct their
configuration. Therefore, the CONF_DONE signal on the first FLEX 8000
device is not tied to the CONF_DONE net of the other FLEX 8000 devices.

Altera Corporation
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Table 7 summarizes the configuration parameters for MD-APH
configuration circuits.

Table 7. MD-APH Configuration Parameters

Parameter

Description

Configuration scheme

First FLEX 8000 device: Active Parallel Up (nSP:mSEL1:mSELQ = 100)
Subsequent FLEX 8000 device(s): Passive Serial (nSP:mSEL1:mSELO = 010)

Non-default device
option & configuration pin
settings

For the first FLEX 8000 device only, turn on the Enable DCLK Output in User Mode
option in the FLEX 8000 Individual Device Options dialog box. For all other

FLEX 8000 devices in the circuit, turn on the Disable Start-Up Time-Out option in the
FLEX 8000 Individual Device Options dialog box.

Device configuration/
programming file

Configuration data is stored in two Hex Files. One Hex File is used for the first
FLEX 8000 device, with an offset address of 00000. Select .hex (Sequential) in the
File Format drop-down list box in the Combine Programming Files dialog box
when generating the Hex File for the first FLEX 8000 device. The other Hex File
contains bit-slice data, generated by combining the SOFs for all passively configured
FLEX 8000 devices in the parallel order in which they are configured on the board.
Select .hex (Bit-Slice) in the File Format drop-down list box in the Combine
Programming Files dialog box when generating Hex Files for the passively
configured devices. The first file in the Selected Files list in the Combine
Programming Files dialog box corresponds to DATAO on the parallel EPROM (i.e.,
the first bit of the bit-slice data for the passively configured devices). You must enter
a starting address value for this file in the Address box that is after the end of the
Hex File for the actively configured (first) FLEX 8000 device.

Reconfiguration on error

‘configured FLEX 8000 devices. Each nSTATUS net must be monitored for a high-to-

No automatic reconfiguration is available. The nSTATUS pin on the first FLEX 8000
device is connected to V¢ separately from the nSTATUS pins of the passively

low transition, which indicates that an error has occurred during configuration. The
nCONFIG pin on the first FLEX 8000 device must be pulled low and then released to
initiate a reconfiguration cycle.
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Introduction As devices become more complex, the need for thorough testing becomes
increasingly important. Advances in surface-mount packaging and circuit
board manufacturing have resulted in smaller circuit boards, making
traditional test methods—e.g., external test probes and “bed-of-nails” test
fixtures—harder to implement. As a result, cost savings from board
reductions may be offset by increases in the cost of traditional testing
methods.
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In the 1980s, the Joint Test Action Group (JTAG) developed the IEEE
1149.1-1990 specification for boundary-scan testing. The Boundary-Scan
Test (BST) architecture offers the capability to efficiently test components
on circuit boards with tight lead spacing. The EPF81500, EPF8820, EPF8636,
EPF8282, and EPF8282V FLEX 8000 devices comply with the IEEE
1149.1-1990 specification by providing BST capability for input pins, output
pins, and dedicated configuration pins.
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You can use the BST architecture to test pin connections without using
physical test probes and to capture functional data while a device is
operating normally. Boundary-scan cells in a device can force logic onto
pin signals or capture data from pin or core logic signals. Forced test data
is serially shifted into the boundary-scan cells and captured data is serially
shifted out and externally compared to expected results. Figure 1 illustrates
the concept of boundary-scan testing.

Figure 1. JTAG Boundary-Scan Testing

The JTAG methodology provides a serial scan path that can capture the contents of the
core logic or test the pin connections between JTAG-compliant devices.
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FLEX 8000
JTAG BST
Architecture

This application note describes how to use the JTAG BST circuitry provided
in FLEX 8000 devices. It discusses the following topics:

FLEX 8000 JTAG BST architecture

JTAG boundary-scan register

JTAG BST operation control

Enabling JTAG BST circuitry

Guidelines for JTAG boundary-scan testing
Boundary-Scan Description Language (BSDL) support
References

JTAG boundary-scan order

ooocooodoD

When a device is operating in JTAG BST mode, four I/O pins are used as
the TDI, TDO, TMS, and TCLK JTAG pins. A dedicated active-low Reset pin,
nTRST, can asynchronously initialize or reset the JTAG BST circuitry.

When a FLEX 8000 device is not operating in JTAG BST mode, nTRST
should be driven low to keep the JTAG circuitry initialized. The TDI, TDO,
and TCLK pins should also be held low, and TMS should be driven high. In
the EPF81500 device, these five pins are dedicated for JTAG BST testing
only. InJTAG devices other than the EPF81500, you can use TDI, TDO, TMS,
and TCLK as normal I/O pins by turning off the JTAG option with
MAX+PLUS II (see “Enabling JTAG BST Circuitry” later in this application
note). Table 1 summarizes the functions of each of the JTAG BST pins.

Table 1. JTAG Pin Descriptions

Pin "~ Name Description
TDI Test data input Serial input pin for instructions and test data. Data
is shifted in on the rising edge of TCLK.
TDO Test data output | Serial data output pin for instructions and test data.

Data is shifted in on the falling edge of TCLK. The
signal is tri-stated if data is not being shifted out of
the device.

TMS Test mode select |Serial input pin to select the JTAG instruction
mode. Data is shifted in on the rising edge of
TCLK. TMS should be driven high during user-
mode operation.

TCLK Test Clock input | Clock pin to shift the serial data and instructions in
and out of the TDI and TDO pins, respectively.
TCLK is also used to shift serial instruction data
into the T™S pin.

nTRST | Test Resetinput |Active-low input to asynchronously initialize or
reset the boundary-scan circuit.
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JTAG boundary-scan testing is controlled by a Test Access Port (TAP)
Controller, which is described in “JTAG BST Operation Control” later in
this application note. The TAP Controller drives three registers: a 3-bit
instruction register that directs the flow of scan test data, a 1-bit bypass
data register, and a large boundary-scan data register located on the
periphery of the FLEX 8000 device. The boundary-scan registers for the
EPF8282 and EPF8282V contain 273 bits; for the EPF8636, 917 bits; for the
EPF8820, 465 bits; and for the EPF81500, 645 bits. Figure 2 shows the JTAG
register control functions. The TMS, nTRST, and TCLK pins operate the
TAP Controller, and the TDI and TDO pins provide the serial scan path for
the test data. The TDI pin also provides data to the instruction register,
which then generates control logic for the data registers.

Figure 2. JTAG Register Control

Instruction Register

DI >
UPDATEIR Yy VY
CLOCKIR .
G Instruction Decode
FRHETR
™S —> TAP MODE
nTRST —®  controller | -SELECT
TCLK —>|
-
| UPDATEDR o y D0
CLOCKDR
SHIFTDR > » P
Bypass
Register
‘> LN
Boundary-Scan Register Test Data Registers
JTAG The boundary-scan register is a large serial-shift register that uses the TDI
pin as an input and the TDO pin as an output. Figure 3 shows how test data
Boundar V'Sca n is serially shifted around the periphery of the FLEX 8000 device. The

Register

boundary-scan register consists of 3-bit periphery elements that are either
I/0O elements (IOEs), dedicated inputs, or dedicated configuration pins.
You can use the boundary-scan register to test external pin connections or
to capture internal data while the device operates.
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Figure 3. Boundary-Scan Register
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1/0 Elements with JTAG BST Registers

Figure 4 shows the IOE of FLEX 8000 devices with JTAG BST registers. The
3-bit boundary-scan cell consists of a set of capture registers and a set of
update registers in each IOE. The capture registers connect to internal
device data via the OUTJ, OEJ, and I/O pin signals, while the update
registers connect to external data through the tri-state data input, tri-state
control, and INJ signals. The control signals for the JTAG BST registers
(e.g., SHIFT, CLOCK, and UPDATE) are generated internally by the TAP
Controller; the MODE signal is generated by an instruction registers decode.
The data signal path for the boundary-scan register runs from the Serial
Data In (SDT) signal to the Serial Data Out (SDO) signal. The scan register
begins at the TDI pin and ends at the TDO pin of the device.
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Figure 4. I/0 Element with JTAG Architecture
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Dedicated Input & Configuration Pins with JTAG BST Registers

The boundary-scan register also includes dedicated input pins and
dedicated configuration pins. Since these pins have special functions,
some bits of the boundary-scan register are internally connected to VCC or
GND, or used only for device configuration; these bits are thus forced to a
static high (1) or low (0) state, or are used internally for configuration.

Figure 5 shows the JTAG BST registers for the dedicated input pins. The
register normally associated with an output signal in an IOE, OUTJ, is tied
to GND, and the tri-state control OEJ is connected to VCC. The signal data
from the dedicated input is the only register that contains test data. The
data shifts out of SDO in the order D, 1, and 0, where the variable D is the
data associated with the dedicated input. Since only the D bit has valid
data, a scan test pattern must either ignore or expect the 1 and 0 that follow
the D bit.
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Figure 5. Boundary-Scan Registers on Dedicated Input Pins
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Figure 6 shows the peripheral elements associated with the dedicated
configuration pins (i.e., nCONFIG, MSELO, MSEL1, nSP, CONF_DONE,
nSTATUS, and DCLK). These pins are used only during device configuration,
but the capture register associated with the I/O pin can be used for

Figure 6. Boundary-Scan Registers on Dedicated Configuration Pins (Part 1 of 2)
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Figure 6. Boundary-Scan Registers on Dedicated Configuration Pins (Part 2 of 2)
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external pin connectivity tests. The I/O pin can receive data but is not able
to force data onto external connections. The data values associated with the
other two capture registers should be ignored.

Tables 4 through 6 at the end of this application note list the boundary-scan
order for the EPF8282 and EPF8282V, EPF8820, and EPF81500 devices.
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JTAG BST FLEX 8000 devices implement the SAMPLE/PRELOAD, EXTEST, and

. BYPASS JTAG BST instruction modes. A 3-bit instruction code clocked in

Operatlon through the TDI pin determines the mode. Table 2 summarizes the three

COntrol instruction modes, which are described in detail later in this application
note.

Table 2. JTAG Boundary-Scan Instruction Modes

Mode | Code Description

SAMPLE/ | 101 |Allows a snapshot of the signals at the device pins to be
PRELOAD captured and examined while the device is operating normally.

EXTEST 000 |Allows the external circuitry and board-level interconnections
to be tested by forcing a test pattern at the output pins and
capturing test results at the input pins.

BYPASS 111 |[Enables the 1-bit bypass register between the b1 and TDO
pins, which allows the BST data to pass through the selected
device synchronously to adjacent devices during normal
device operation.

The TAP Controller, a 16-state state machine clocked on the rising edge of
TCLXK, uses the TMS pin to control JTAG operation in the device. Figure 7
shows the flow of the TAP Controller.
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Figure 7. JTAG TAP Controller State Machine
RN

TMS =1

Select DR

Capture_DR

Shift_DR

4

Pause_DR

TMS =0

Update_DR |<¢——

TMS =0

Capture_IR

Shift_IR

4

Pause_IR T™S = 0

Update_IR

At device power-up, the TAP Controller is in the RESET state. It remains in
RESET as long as TMS is held high when TCLK is clocked. During JTAG
operation, the RESET state is entered if TMS stays high for at least five TCLK
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JTAG Boundary-Scan Testing in FLEX 8000 Devices Application Note 39

Clock cycles. You can also return the TAP Controller to the RESET state by
holding the nTRST pin low.

To start JTAG operation, you must select an instruction mode by advancing
the TAP Controller to the SHIFT_IR (shift instruction register) state and
then clocking the appropriate instruction code on the TDI pin. The waveform
diagram in Figure 8 represents the entry of the instruction code into the
instruction register. It shows the values of TCLK, TMS, TDI, and TDO and
the states of the TAP Controller. From the RESET state, TMS is clocked with
the pattern 01100 to advance the TAP Controller to SHIFT_IR.

Figure 8. Selecting the Instruction Mode

TCLK I ] l I l

TAP_STATE

™S
I
I | | [ —
X X X X SHIFT_IR X
| e | ’
RUN/IDLE SELECT_IR EXIT1_IR

SELECT_DR CAPTURE_IR

To ensure proper JTAG operation, the initial state of the instruction register
has the code 101. When the SHIFT_IR state is activated, TDO is no longer
tri-stated, and the code 101 shifts out on three consecutive falling TCLK
edges. TDO continues to shift out the contents of the instruction register as
long as the SHIFT_IR state is active. The TAP Controller remains in the
SHIFT_IR state as long as TMS remains low.

During the SHIFT_IR state, an instruction code is entered by clocking
data on the TDI pin on the rising edge of TCLK. The third bit of the code
must be clocked at the same time that the next state, EXIT1_ IR, isactivated;
EXIT1_IR is entered by clocking a high logic level on TMS. Once in the
EXIT1_IR state, TDO becomes tri-stated again. It remains tri-stated except
in the SHIFT_IR and SHIFT_ DR (shift data register) states. After an
instruction code is correctly entered, the TAP Controller is advanced to
perform the serial shifting of test data in one of three modes—
SAMPLE/PRELOAD, EXTEST, or BYPASS—which are described below.

SAMPLE/PRELOAD Instruction Mode

The SAMPLE/PRELOAD instruction mode allows you to take a snapshot
of device data without interrupting normal device operation. Figure 9
shows the capture, shift, and update phases of the SAMPLE/PRELOAD
mode.
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Figure 9. JTAG BST SAMPLE/PRELOAD Mode
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[ JTAG Boundary-Scan Testing in FLEX 8000 Devices Application Note 39[

During the capture phase, the multiplexers that precede the capture registers
select the active device data signals; this data is then clocked into the
capture registers. The multiplexers that follow the update registers also
select active device data to prevent functional interruptions to the device.
During the shift phase, the boundary-scan shift register is formed by
clocking data through capture registers around the device periphery and
then out of the TDO pin. New test data can simultaneously be shifted into
TDI and replace the contents of the capture registers. During the update
phase, data in the capture registers is transferred to the update registers.
(This data can then be used in the EXTEST instruction mode described
below.)

Figure 10 shows the SAMPLE/PRELOAD waveforms. The code 101 is
shifted in through the TDI pin. The TAP Controller advances to the
CAPTURE_DR state and then to the SHIFT_DR state, where it remains if
TMS is held low. The data shifted out of the TDO pin consists of the data that
was present in the capture registers after the capture phase. New test data
shifted into the TDI pin appears at the TDO pin after being clocked through
the entire boundary-scan register. Figure 10 shows that the 101 code at
TDI does not appear at the TDO pin until after the capture register data is
shifted out. If TMS is held high on two consecutive TCLK Clock cycles, the
TAP Controller advances to the UPDATE_DR state for the update phase.

Figure 10. SAMPLE/PRELOAD Shift Data Register Waveforms
ok L LT ool LI LI LITLT

T™S Xy l
™ _[ 1 [ 1 1 [ L...
00 . ST+ 5 —
TAP_STATE SHFT IR X X X ? XX o SHIFT DR X
S ——— S —
Instruction code EXIT1_IR I SELECT_DR [ Data stored in After boundary-scan EXIT1_DR
UPDATE_IR  CAPTURE_DR  boundary-scan register data has  yppATE_DR
register is shifted been shifted out,
out of TDO. data entered into TDI
will shift out of TDO.

EXTEST Instruction Mode

The EXTEST instruction mode is used primarily to check external pin
connections between devices. Unlike the SAMPLE/PRELOAD mode,
EXTEST allows test data to be forced onto the pin signals. By forcing
known high and low logic levels on output pins, open and short circuits
can be checked on input pins of any devices in the test scan chain. Figure 11
shows the capture, shift, and update phases of the EXTEST mode.
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Figure 11. JTAG BST EXTEST Mode

Capture Phase
SDO

In the capture phase, the
signals at the pin, OEJ and 0
OUTJ, are loaded into the D a b al INJ

capture registers. The register | —]
CLOCK signal is supplied by
the TAP Controller’s
CLOCKDR output. Previously
retained data in the update OEJ —¢
registers drives the I10E input,

INJ, and allows the 1/0 pin to 1 — o
tri-state or drive a signal out. p

A “1”in the OEJ update
register tri-states the output OuTJ —¢
buffer.

—
(1]
(]
-
=3
[
=2

(72}
=
@
o
=
o
-]
=
(=]
=
7]

N

Capture Update
Registers Registers

sDI SHIFT UPDATE MODE
CLOCK

Shift & Update Phases s0o

In the shift phase, the
previously captured signals at 5
the pin, OEJ and OUTJ, are D Q Q| INJ

shifted out of the boundary- — —
scan register via the TDO pin
using CLOCK. As data is
shifted out, the patterns for

the next test can be shifted in OEJ 5
. . 5
via the TDI pin. b a —
*— [ ! b

In the update phase, data is 4
transferred from the capture
registers to the update

Vo

registers using the UPDATE ouTy
Clock. The update registers 0 b a b al —[>—<*—E§
then drive the I0E input, INJ, . o
and allow the 1/0 pin to tri- b i
state or drive a signal out.

Capture Update

Registers Registers

SDI SHIFT UPDATE MODE
CLOCK

Altera Corporation Page 103




JTAG Boundary-Scan Testing in FLEX 8000 Devices Application Note 39 I

EXTEST differs from SAMPLE/PRELOAD in the selection of data. EXTEST
chooses data from the update registers as the source of the INJ, output,
and Output Enable signals. Once the EXTEST instruction code is entered,
the multiplexers select the update register data; thus, data stored in these
registers from a previous EXTEST or SAMPLE/PRELOAD test cycle can
be forced onto the pin signals. In the capture phase, the results of this test
data are stored in the capture registers and then shifted out of TDO during
the shift phase. New test data can then be stored in the update registers
during the update phase.

The waveform diagram in Figure 12 resembles the SAMPLE/PRELOAD
waveform diagram, except that EXTEST uses the instruction code 000.
The data shifted out of TDO consists of the data that was present in the
capture registers after the capture phase. New test data shifted into the
TDI pin appears at the TDO pin after being clocked through the entire
boundary-scan register.

Figure 12. EXTEST Shift Data Register Waveforms
o L LT L Ll
w™s 1 vee

TDI

TDO

TAP_STATE

SHIFT_IR X ; X X X X ces SHIFT_DR X T X
R T S —
Instruction code EXIT1_IR I SELECT_DR I Data stored in After boundary-scan EXIT1_DR
UPDATE_IR  CAPTURE_DR boundary-scan register data has UPDATE_DR
register is shifted been shifted out,
out of TDO. data entered into TDI
will shift out of TDO.

BYPASS Instruction Mode

If the SAMPLE/PRELOAD or EXTEST instruction modes are not selected,
the TAP Controller automatically enters the BYPASS mode. Otherwise,
BYPASS is activated with the instruction code 111. The waveforms in
Figure 13 show how scan data passes quickly through a device once the
TAP Controller is in the SHIFT_DR state. In this state, data signals are
clocked into the bypass register from TDI on the rising edge of TCLK and
out of TDO on the falling edge of the same Clock pulse.
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Figure 13. BYPASS Shift Data Register Waveforms
S (SN I I T O

™ i
TDI
TDO I |  p———
TAP_STATE SHIFT_IR__ X ; X X : X X SHIFT_DR X ; X :
Instruction code  EXIT1_IR SELECT_DR | Data shifted into TDI on EXIT1_DR |
UPDATE_IR CAPTURE_DR the rising edge of TCLK UPDATE_DR
is shifted out of TDO on
the falling edge of the

same TCLK pulse.

Enablin g JTAG You can use JTAG boundary-scan testing either before or after a FLEX 8000
. . device is configured. The JTAG BST circuitry is enabled automatically
BST Circu itry prior to device configuration. If the dedicated configuration pin nCONFIG
is held low, device configuration is delayed and you can perform JTAG
boundary-scan testing. If the Enable JTAG Support option is turned on with
MAX+PLUS 1II before compilation, you can also perform JTAG testing

once configuration is finished.

You can enable JTAG support on a device-by-device basis with the
FLEX 8000 Individual Device Options dialog box. You can also enable
JTAG support on all devices in a project with the FLEX 8000 Device
Options dialog box.

When the Enable [TAG Support option is turned on, TDI, TDO, TMS, and
TCLK become dedicated JTAG pins after device configuration. If JTAG
support is disabled, these pins function as standard I/O pins, except in the
EPF81500, which has dedicated JTAG pins.

- Go to the current FLEX 8000 Programmable Logic Device Family Data Sheet or
.- MAX+PLUS II Help for JTAG pin numbers. For detailed information on
configuring FLEX 8000 devices, refer to Application Note 33 (Configuring
FLEX 8000 Devices) and Application Note 38 (Configuring Multiple FLEX 8000

Devices) in this handbook.
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l JTAG Boundary-Scan Testing in FLEX 8000 Devices Application Note 39 !

Guidelines Use the following guidelines when performing boundary-scan testing

for JTAG with JTAG devices:

- 3 Ifthe 101 code does not shift out of the instruction register via the TDO

Bﬂl":lda ry Scan pin during the first three Clock cycles of the SHIFT_IR state, then the

Testi ng proper TAP Controller state has not been reached. To solve this
problem, try the following:

—  Verify that the TAP Controller has reached the SHIFT_IR state
correctly. To advance the TAP Controller to the SHIFT_IR state,
return to the RESET state and clock the code 01100 on the T™MS
pin.

—  Check the connections to the vCC, GND, JTAG, and dedicated
configuration pins on the device.

—  If the device is in user mode, make sure that the Enable [TAG
Support option is turned on.

QO  Youshould perform a SAMPLE /PRELOAD test cycle prior to the first
EXTEST test cycle to ensure that known data is present at the device
pins when the EXTEST mode is entered. If the OEJ update register
contains a 0, then the IOE will drive out the data in the OUTJ update
register. The IOE state must be known and correct to avoid contention
with other devices in the system.

[ The bypass and boundary-scan registers shift simultaneously when
the TAP Controller is in the SHIFT_DR state. Using the BYPASS mode
will shift test data out of the capture registers. Therefore, do not
execute a BYPASS shift cycle before an EXTEST test cycle that requires
preloaded test data.

If problems persist, call Altera Applications at (800) 800-EPLD.

Boundarv- You can describe the testability features of a JTAG-compliant FLEX 8000
ou d_a _y Scan device using the Boundary-Scan Description Language (BSDL). BSDL is a
Descrlptlon subset of VHDL. You can use BSDL with test software development
La nguage systems for test generation, analysis, and failure diagnosis.

(BSDL) Suppnrl Table 3 lists the BSDL files for JTAG-compliant FLEX 8000 devices. These
self-extracting files are available from the Altera bulletin board service
(BBS) at (408) 954-0104.
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Conclusion

References

JTAG
Boundary-Scan
Order

Table 3. BSDL Support
Device Package Filename

EPF8282 and EPF8282V 100-pin TQFP epf8282t.bsd
84-pin PLCC epf8282l.bsd

EPF8636 208-pin RQFP Under development
192-pin PGA
84-pin PLCC

EPF8820 225-pin BGA epf8820b.bsd
208-pin RQFP epf8820r.bsd
192-pin PGA epf8820g.bsd

EPF81500 304-pin RQFP epf8150r.bsd
280-pin PGA epf8150g.bsd

The JTAG BST circuitry available in FLEX 8000 devices provides a cost-
effective and efficient way to test systems with tight lead spacing. Circuit
boards with FLEX 8000 and other JTAG-compliant devices can use the
EXTEST, SAMPLE/PRELOAD, and BYPASS modes to create serial patterns
that internally test the pin connections between devices and check device
operation.

Bleeker, H., P. van den Eijnden, and F. de Jong. Boundary-Scan Test: A
Practical Approach. Eindhoven, The Netherlands: Kluwer Academic
Publishers, 1993.

Institute of Electrical and Electronic Engineers, Inc. IEEE Standard Test
Access Port and Boundary-Scan Architecture (IEEE Std 1149.1-1990). New
York: Institute of Electrical and Electronic Engineers, Inc., 1990.

Maunder, C. M., and R. E. Tulloss. The Test Access Port and Boundary-
Scan Architecture. Los Alamitos: IEEE Computer Society Press, 1990.

Table 4 shows the boundary-scan order for the EPF8282 and EPF8282V
JTAG-compliant devices. These devices are available in 100-pin thin quad
flat pack (TQFP) and 84-pin plastic J-lead chip carrier (PLCC) packages.
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Table 4. EPF8282 & EPF8282V JTAG Boundary-Scan Order
Scan 100-Pin 84-Pin  Pin Scan 100-Pin 84-Pin Pin Scan 100-Pin 84-Pin Pin
Order TQFP PLCC Function| Order TQFP PLCC  Function | Order TQFP PLCC Function
DI 54 55 - 31 88 2 /o] 62 24 32 nSTATUS

1 55 56 110 32 88(1) 2(1) IO 63 25 33 nCONFIG

2 57 57 110 33 89 3 l{e] 64 26 34 I/O

3 58 58 /1O 34 90 3(1) /O 65 27 (1) 35 110

4 59 60 110 35 91 4 110 66 27 35(1) /O

5 60 61 110 36 91 (1) 4(1) 1O 67 28 36 /0

6 61 62 /10 37 92 6 /0 68 29 37 /0

7 62 63 /0 38 93 6 (1) /0 69 31 (1) 39 /0

8 64 64 /0 39 95 7 /O 70 31 39 (1) 1/O0

9 65 65 110 40 96 7(1) 1O 71 32 40 110

10 66 66 /10 41 97 8 110 72 33 41 /10

11 67 67 110 42 98 8 (1) 1O 73 34(1) 42 110

12 68 69 110 43 99 9 1’0 74 34 42 (1) 10

13 69 70 110 44 100 10 DCLK 75 35 43 110

14 7 71 /0 45 1 11 CONF_DONE 76 36 43 (1) /O

15 783 73 INPUT | 46 3 12 INPUT 77  38(1) 44 110

16 74 74 MSELO 47 4 13 110 78 38 44 (1) 1/O

17 75 75 nspP 48 5 14 110 79 39 45 110

18 76 76 I/0 49 7 15 /0 80 40 45 (1) /10

19 77 77 110 50 8 16 /O 81 41 (1) 46 110

20 77(1) 77(1) 1O 51 9 18 110 82 41 46 (1) 110

21 78 78 I} 52 10 19 /O 83 42 48 /0

22 79 79 /0 53 12 21 /o] 84 43 48 (1) /0

23 81 81 110 54 14 22 fle] 85 45 49 110

24 81(1) 81(1) 10 55 15 23 110 86 46 49 (1) 11O

25 82 82 110 56 16 24 /0 87 47 50 /0

26 83 83 /o] 57 17 25 /10 88 48 50 (1) 11O

27 84 84 /0 58 19 28 l{e] 89 49 51 /0

28 84(1) 84(1) IO 59 21 29 110 90 51 53 MSEL1

29 85 1 /10 60 22 30 I/0 91 53 54 INPUT

30 86 1(1) 1O 61 23 31 INPUT ™o 18 27 -

Note: A

(1) Double-bonded pin. IOE is not connected to internal logic and IOE output is tri-stated; JTAG data should be ignored.
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Table 5 shows the boundary-scan order for the EPF8820 JTAG-compliant
device. This device is available in 208-pin power quad flat pack (RQFP),
192-pin pin-grid array (PGA), and 225-pin ball-grid array (BGA) packages.

Table 5. EPF8820 JTAG Boundary-Scan Order (Part 1 of 3)
Scan 208-Pin 192-Pin  225-Pin Pin Scan  208-Pin 192-Pin  225-Pin Pin
Order  RQFP PGA BGA  Function | Order  RQFP PGA BGA Function
DT 20 R11 FiI5 - 32 185 K16 cs 1o
1 19 ui2 Fi4 10 33 184 J17 B8 IO
2 18 T12 FI3 10 34 183 J15 A8 1O o
3 17 u13 E15  INPUT 35 181 J14 D8 10 = 4
4 14 R12  E13 1O 36 180 J16 E8 1O 28
5 13 Ui4 D15 1O 37 179 H16 B7 IO 8 2
6 12 T13 Fi1 10 38 178 H17 A7 1O S =
7 11 u1s D14 10 39 177 H15 c7 1o @
8 10 R13 E12 1O 40 176 G17 D7 1O
9 9 u1e Cc15 10 41 175 G16 E7 10
10 8 T14 D13 1O 42 174 F17 A6 1O
11 7 T16 ci4 1o 43 172 E17 A5 1O
12 4 T15 B14  MSELO 44 171 G15 B IO
13 207 R15 A15  nsp 45 170 D17 D6 IO
14 205 P15 B13 10 46 169 F16 c5 10
15 204 ui7 E11 1O 47 168 c17 A4 10
16 203 P16 ci2 1o 48 167 F15 E6 1O
17 202 R16 A13 1O 49 166 B17 B4 1O
18 201 N15 B12 1O 50 165 E16 D5 1O
19 199 N16 Di11 10 51 163 E15 A3 1O
20 198 T17 A12 10 52 162 c16 c4 10
21 197 M15 ci1 10 53 161 D16 B3 10
22 196 R17 B11 1O 54 160 A17 F6 10
23 195 M16 E10 10O 55 158 Cci15 B2  pCIx
24 194 P17 A1 1O 56 153 B15 Al CONF_DONE
25 193 L15 D10 1O 57 151 c14 c2 10
26 192 N17 cio 10 58 150 B16 E5 10
27 190 M17 D9 e} 59 149 B14 D3 10
28 189 L16 C9 o) 60 148 A16 ct 1o
29 188 L17 B9 110 61 147 c13 D2 10
30 187 K15 A9 7o) 62 146 A15 E4 1O
31 186 K17 E9 7o) 63 145 B13 D1 1O
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Table 5. EPF8820 JTAG Boundary-Scan Order (Part 2 of 3)
Scan  208-Pin 192-Pin  225-Pin Pin Scan  208-Pin 192-Pin  225-Pin Pin
Order RQFP PGA BGA Function | Order RQFP PGA BGA  Function
64 144 Al4 E3 110 96 98 c2 R3 110
65 143 c12 E2 110 97 97 E2 P4 10
66 140 A13 F4 INPUT 98 95 F3 M5 /0
67 139 B12 F3 110 99 94 B1 R4 110
68 138 A12 F2 110 100 93 F2 N5 I/0
69 137 Cci1 F1 110 101 92 C1 P5 110
70 136 A1 G4 110 102 91 G3 L6 110
71 135 B11 G3 110 103 90 D1 R5 110
72 134 A10 G2 110 104 89 G2 M6 110
73 133 B10 Gt 110 105 88 E1 N6 110
74 132 A9 G5 110 106 86 F1 M7 110
75 128 B8 J1 110 107 85 H3 N7 110
76 127 A8 J3 110 108 84 G1 P7 110
77 126 B7 J4 110 109 83 H2 R7 110
78 125 A7 J5 I/0 110 82 H1 L7 110
79 124 c7 K1 110 111 81 J3 N8 110
80 123 A6 K2 110 112 80 J2 P8 110
81 122 B6 K3 110 113 79 Ja R8 I/0
82 121 A5 L1 INPUT 114 77 K2 M8 110
83 118 cé L3 110 115 76 J1 L8 110
84 117 A4 M1 I/0 116 75 K3 P9 110
85 116 B5 K5 110 117 74 K1 R9 110
86 115 A3 M2 110 118 73 L2 N9 110
87 114 C5 L4 110 119 72 L1 M9 110
88 113 A2 N1 110 120 71 L3 L9 110
89 112 B4 M3 110 121 70 M1 R10 110
90 111 B2 N2 110 122 68 N1 R11 110
91 108 B3 P2 nSTATUS 123 67 M2 P11 /0
92 103 C3 R1 nCONFIG 124 66 P1 M10 /0
93 101 D2 P3 110 125 65 M3 N11 110
94 100 Al L5 110 126 64 R1 R12 110
95 99 E3 N4 110 127 63 N2 L10 110
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Table 5. EPF8820 JTAG Boundary-Scan Order (Part 3 of 3)

Scan  208-Pin 192-Pin  225-Pin Pin Scan  208-Pin 192-Pin  225-Pin Pin

Order RQFP PGA BGA Function | Order RQFP PGA BGA  Function
128 62 T P12 110 143 39 R6 L14 110
129 61 N3 M11 110 144 36 us K12 INPUT
130 59 P2 R13 /O 145 35 T6 K13 )
131 58 R2 N12 110 146 34 ue K14 110
132 57 P3 P13 110 147 33 R7 K15 110
133 56 U1 K10 110 148 31 T7 J13 I/O
134 49 T3 R15 MSEL1 149 29 T8 J15 1’0 L
135 47 R4 N14 110 150 28 T9 J11 110 e E
136 46 T2 L11 110 151 25 u9 G14 I/0 5 g
137 45 T4 M13 110 152 24 T10 G15 110 =8
138 44 U2 N15 110 153 23 u1o G13 110 &
139 43 R5 M14 110 154 22 T11 G12 110
140 42 us L12 110 155 21 Ui G11 110
141 41 T5 M15 1’0 TDO 129 B9 J2 -
142 40 U4 L13 110

Table 6 shows the boundary-scan order for the EPF81500 JTAG-compliant
device. This device is available in 304-pin power quad flat pack (RQFP)
and 280-pin PGA packages.
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Table 6. EPF81500 JTAG Boundary-Scan Order (Part 1 of 2)

Scan 304-Pin 280-Pin Pin Scan 304-Pin 280-Pin Pin Scan 304-Pin 280-Pin  Pin
Order RQFP PGA  Function |Order RQFP PGA  Function |Order RQFP PGA Function
DI 80 B1 - 36 20 N2 I/0 72 279 V8 110
1 76 Ct 110 37 19 P1 110 73 278 w7 110
2 75 D2 110 38 18 N3 110 74 277 T9 110
3 74 D1 110 39 17 R1 110 75 276 ws 110
4 73 E3 /0 40 16 N4 1’0 76 275 U9 110
5 72 E1 110 41 15 T 110 77 274 V9 I/0
6 71 E2 1’0 42 14 P2 110 78 272 w9 110
7 70 F2 110 43 13 T2 110 79 271 u10 110
8 69 F4 110 44 12 P3 INPUT 80 270 W10 110
9 64 F1 INPUT 45 8 U1 110 81 269 ut1 110
10 63 F3 I/0 46 7 R2 110 82 268 V10 110
11 62 G2 110 47 6 u2 110 83 267 T10 110
12 61 G4 110 48 5 R3 110 84 264 W11 1o}
13 60 Gt 110 49 4 V1 110 85 263 \AK] 110
14 59 G3 110 50 3 T3 110 86 261 u12 110
15 58 H2 110 51 2 V2 110 87 260 Vi1 110
16 57 H4 110 52 1 us I/0 88 259 T11 110
17 56 H1 110 53 304 Wi nsp 89 258 w12 110
18 51 H3 MSEL1 | 54 299 U4 110 90 257 u13 110
19 50 J2 110 55 298 w2 110 91 256 V12 110
20 49 J4 110 56 297 T6 /O 92 255 T12 110
21 48 J1 110 57 296 V3 110 93 254 w13 110
22 47 J3 110 58 295 us 110 94 252 W14 110
23 46 K1 110 59 294 w3 I/0 95 251 Vi4 110
24 45 K3 110 60 293 ue I/O 96 250 W15 110
25 44 K2 110 61 292 V4 I/0 97 249 ui4 110
26 43 K4 I/0 62 290 w4 110 98 248 W16 110
27 34 L1 110 63 289 17 I/0 99 247 V15 110
28 33 L3 I/O 64 288 V5 I/O 100 246 w17 110
29 32 L2 I/O 65 287 u7 I/0 101 245 u15 110
30 31 L4 /0 66 286 w5 110 102 243 V16 110
31 30 M1 110 67 285 T8 I/0 103 242 w18 I/0
32 29 M3 I/O 68 284 V6 110 104 241 u1e I/0
33 28 M2 110 69 283 V7 I/0 105 240 V18 110
34 27 M4 110 70 281 us I/0 106 239 V17 110
35 26 N1 MSELO | 71 280 we I/0 107 238 W19 I/0
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Table 6. EPF81500 JTAG Boundary-Scan Order (Part 2 of 2)
Scan 304-Pin 280-Pin Pin Scan 304-Pin 280-Pin Pin Scan 304-Pin 280-Pin  Pin
Order RQFP PGA  Function |Order RQFP PGA Function |Order RQFP PGA Function
108 230 U18 DCLK 145 171 Gi18 /0 182 121 A1 110
109 229 V19 /0 146 170 Gi17 1O 183 120 ci1 110
110 228 T17 /O 147 169 F19 1/O 184 118 ci0 110
111 227 utie 1o 148 168 Gi6 110 185 117 A10 110
112 226 T18 1O 149 167 Fi18 11O 186 114 D10 110
113 225 T19 1O 150 166 F17  1/O 187 113 B10 110
114 224 R17 1O 151 165 E19 1/O 188 112 B9 110 £
115 223 R19 10 152 164 F16  INPUT 189 111 A9 110 S §
116 222 R18 /O 153 160 E18 1O 190 110 B8 110 § §'
117 217 P19 INPUT 154 159 E17 1O 191 109 A8 110 =3 &_:
118 216 P17 1O 155 158 D19 1O 192 107 A7 110 2
119 215 Ni18 110 156 157 D18 I/O 193 106 Cc9 110
120 214 P18 I/O 157 156 c19 10 194 105 A6 110
121 213 N19 IO 158 155 D17 1O 195 104 D9 110
122 212 N16 1/O 159 154 B19 11O 196 103 A5 110
123 211 M18 /O 160 153 ci18 10 197 102 (o1} 1’0
124 210 N17 1/O 161 152 B18 nCONFIG | 198 101 B6 110
125 209 M19 I/O 162 143 A17 1O 199 100 B7 110
126 204 M16 CONF_DONE | 163 142 cie 1O 200 98 c7 110
127 203 L18 /O 164 141 At6 1O 201 97 A4 110
128 202 M17 /O 165 140 B16 11O 202 96 D8 110
129 201 L19 1O 166 139 A15 /O 203 95 B5 I/O
130 200 L16 11O 167 138 C15 10 204 94 D7 110
131 199 K19 1O 168 136 B15 1O 205 93 A3 110
132 198 L17 11O 169 135 B14 1/0 206 92 Cé I/O
133 197 K18 110 170 134 Cci4 10 207 91 B4 /0
134 196 K17 1/0 171 133  A14 /O 208 89 A2 110
135 186 J19 110 172 132 D13 110 209 88 C5 I/0
136 185 K16 1/O 173 131 B13 11O 210 87 B3 110
137 184 J18 110 174 130 D12 IO 211 86 C4 110
138 183 J17 /0 175 129 A13 110 212 85 A1 110
139 182 H19 /O 176 127 Bi2 I/O 213 84 Dé 110
140 181 Ji6 11O 177 126 C13 110 214 83 B2 110
141 180 H18 /O 178 125 A12 10 215 82 Cc3 110
142 179 H17 1O 179 124 ci2 1o ™0 149 ci7 -
143 178 G19 nSTATUS 180 123 B11 1O
144 172 H16 /O 181 122 D11 /O
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Physical Science Lab designs instrumentation packages for rockets, balloons, and
spacecraft. PSL uses the EPF8452 in their Pulse Code Modulation (PCM) Simulator
Board. The PCM Simulator Board simulates the data stream output of a flight telemetry
encoder and is used to test ground station hardware.
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Introduction

Designing for
Speed & Density

Historically, programmable logic devices have fallen into two broad
categories: Erasable Programmable Logic Devices (EPLDs) and Field-
Programmable Gate Arrays (FPGAs). Widespread use of both EPLDs and
FPGAs has revealed the strengths of each type of device. Altera’s
FLEX 8000 architecture combines the strengths of both EPLDs and FPGAs.
This application note describes some of the basic characteristics of the
FLEX 8000 architecture and offers several design guidelines that can help
you use this architecture effectively.

Regardless of your level of familiarity with programmable logic devices,
the information in this application note can help you use FLEX 8000
devices to their fullest potential. For detailed descriptions of the FLEX 8000
architecture and device configuration, refer to Application Note 40
(FLEX 8000 Architecture), Application Note 33 (Configuring FLEX 8000 Devices),
and Application Note 38 (Configuring Multiple FLEX 8000 Devices) in this
handbook.

Engineers have learned to expect different levels of performance and
density from EPLDs and FPGAs. In both EPLD and FPGA architectures,
trade-offs are made to optimize designs either for speed or for density.
With the FLEX 8000 architecture, you can control speed / density trade-offs
to suit the needs of your application. In addition, you can use Altera’s
MAX+PLUS II software to automatically optimize all or part of a circuit for
speed or density. You can also structure designs to take advantage of the
physical characteristics of the FLEX 8000 architecture.

Automatic Design Optimization

Altera’s MAX+PLUS II software automatically optimizes a design for the
architecture of its target device family. Therefore, you can change the
target device family for a design without entering any special design
modifications. You can also combine one or more existing EPLD designs
and re-target them for one or more FLEX 8000 devices.

When you compile a design for the FLEX 8000 device family, the
MAX+PLUS II Compiler automatically uses macrofunctions that are
optimized for the FLEX 8000 architecture and performs FLEX 8000 family-
specific logic synthesis and optimization. You can use logic synthesis
styles and logic options that are tailored to the FLEX 8000 architecture to
further control design optimization. The automatic design optimization in

Altera Corporation
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Basic
Architectural
Features

Design Entry
Methods

MAX+PLUS II allows you to re-target designs to other device families
quickly and with minimal effort.

Designing for FLEX 8000 Architecture

In addition to using automatic design optimization, you can take advantage
of specific architectural features in FLEX 8000 devices to create circuits that
run at higher speeds or use fewer device resources. MAX+PLUS II design
entry methods provide the detailed control necessary to achieve the
maximum possible speed and density in a FLEX 8000 device.

The FLEX 8000 architecture is based on logic elements (LEs) containing
4-input look-up tables (LUTs), registers, and several other features that are
especially important in creating logic designs:

A Register control functions—Clock, Clear, and Preset signals that control
a programmable flipflop.

[ FastTrack Interconnect—A series of fast, continuous paths that run
the entire length and width of the device and provide signal
interconnections between different Logic Array Block (LABs) and
between LABs and pins.

O Carry and cascade chains—High-speed data paths that connect adjacent
LEs without using other interconnect resources.

The FLEX 8000 LUT can implement any function of four variables. When
you compile a FLEX 8000 design, the MAX+PLUSII Compiler automatically
divides functions of more than four variables into multiple 4-input functions.

In contrast, Altera’s Classic, MAX 5000/EPS464, and MAX 7000 device
families use an AND-OR array as the fundamental building block for
combinatorial logic, with eight, five, and three product terms per macrocell,
respectively. When you compile a design for any of these EPLD families,
the Compiler divides functions requiring more than the available number
of product terms into multiple macrocells.

Altera provides and supports design entry methods that offer a full spectrum
of low- to high-level control over actual design implementation. If your
primary goal is a fast design cycle, you can describe a design with high-
level constructs in a hardware description language (HDL) such as Verilog
HDL, VHDL, or the Altera Hardware Description Language (AHDL).
Although high-level constructs help simplify the design entry process,
they can limit your control over the physical device implementation because
the synthesized logic depends on the synthesis algorithms of the software
that processes the HDL.
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General
FLEX 8000
Design
Guidelines

If you wish to obtain the maximum performance and density in FLEX 8000
devices, you can describe designs with primitive gates and registers (i.e., a
“gate-level” design) using HDLs or schematics. MAX+PLUS Il also provides
family-specific macrofunctions that have been optimized for the FLEX 8000
architecture. Gate-level designs and designs that use FLEX 8000 family-
specific macrofunctions provide the greatest control over the physical
implementation in a device. Although designing at the gate level may slow
the design process, it typically yields the highest speeds and lowest area
costs.

Regardless of the design entry method you choose, you can assign logic
options in MAX+PLUS 1II to guide logic synthesis on individual logic
functions. You can also apply logic synthesis styles, which are combinations
of logic option settings saved under a single name. These logic options and
logic synthesis styles can be set to optimize a design for a particular device
family. For example, specifying a setting of “Auto” for the Carry Chain
and Cascade Chain logic options instructs the Compiler to automatically
implement FLEX 8000 carry and cascade chains, which are useful for
optimizing designs for high speed or minimum area.

These logic options are also set to Auto in the Altera-provided Fast logic
synthesis style in MAX+PLUSIL In contrast, specifying a setting of “Ignore”
for the Carry Chain and Cascade Chain logic options directs the Compiler
to ignore any user-specified carry and cascade logic. These logic options
are set to Ignore in the Altera-provided Normal logic synthesis style. Since
the LEs in a carry or cascade chain must be adjacent to each other, long
carry or cascade chains can limit fitting flexibility and may reduce the
routability of a design. Therefore, you may wish to use different logic
option settings in different portions of your design. For more information
on logic options and logic synthesis styles, refer to MAX+PLUS II Help; for
more information on carry and cascade chains, refer to Application Note 40
(FLEX 8000 Architecture) in this handbook.

The following design guidelines will help you use the FLEX 8000
architecture as efficiently as possible. Following these guidelines will yield
maximum speed, reliability, and device resource utilization, and minimize
fitting problems.

Reserve Resources in the Device for Future Expansion

The design process generally includes many modification cycles for logic
changes or additional logic. Altera recommends that you leave 20% of the
device’s logic cells and I/O pins unused to accommodate future design
modifications.

[7\Itera Corporation
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Allow the Compiler to Select Pin & Logic Cell Assignments

Although you can use FLEX 8000 device resources extremely efficiently,
poorly or arbitrarily selected resource assignments can prevent a design
from fitting. During compilation, MAX+PLUS II arranges and permutes
logic cell and I/O pin locations to use the partially populated multiplexers
in the FastTrack Interconnect as efficiently as possible. Pin and/or logic
cell assignments, however, can limit the MAX+PLUS II Compiler’s ability
to arrange signals efficiently, thus reducing the probability of a successful
fit. Therefore, Altera recommends that you allow the Compiler to choose
all pin and logic cell locations automatically. You should also simulate a
design as thoroughly as possible before you lay out your printed circuit
board or back-annotate the Compiler’s pin assignments.

Balance Ripple-Carry & Carry Look-Ahead Usage

Each FLEX 8000 LE contains high-speed carry and cascade generation
logic. The dedicated carry chain in the FLEX 8000 architecture can propagate
a ripple-carry for short- and medium-length counters and adders with
minimum delay and maximum efficiency. Long carry chains, however,
restrict the Compiler’s ability to fit a design because the LEs in the chain
must be contiguous.

You can design counters using either a ripple-carry or a carry look-ahead.
In contrast to ripple-carry counters, logic cells used in carry look-ahead
counters can be non-adjacent. When the Compiler processes a carry look-
ahead counter, it can arrange and permute the LEs to map the design into
the device more efficiently.

s Altera does not recommend using ripple-clocked counters, i.e.,
counters in which the output of one flipflop clocks another flipflop.

Altera recommends that you use carry chains only in the portions of a
design that require maximum performance. You can choose between
using ripple-carry and carry look-ahead counters on a case-by-case basis.
In some cases, you may wish to trade the speed and silicon efficiency of a
ripple-carry implementation for the increased routability and logic cell
usage of a carry look-ahead implementation. For more information on
counters, refer to Application Brief 121 (Designing Counters in FLEX 8000
Devices) in this handbook.

Use Global Clock & Clear Signals

In FLEX 8000 devices, a programmable flipflop is used to support sequential
functions. Sequential logic circuits are most reliable if they are fully
synchronous, i.e., if every register in the design is clocked by the same
global Clock signal and reset by the same global Clear signal. The FLEX 8000
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architecture is optimized for this type of highly reliable, fully synchronous
design. Four dedicated high-speed, low-skew global signals are available
throughout each device, independent of the FastTrack Interconnect
resources. Using these global signals for Clock and Clear functions will
ensure a more reliable design and a much more efficient fit. Figure 1 shows
the register control signals in FLEX 8000 devices.

Figure 1. Clear & Preset Logic

Clear Logic L
vCC PRN

LE-Out

DATA3

LABCTRL1
LABCTRL2

Preset Logic
VvCC

DATA3
LABCTRL1

PRN

LE-Out

CLRN

The Preset and Clear functions of the register can be functions of LABCTRL1,
LABCTRL2, and DATA3. This structure is especially useful for sequential
functions that require an asynchronous Clear with loading capability.

The asynchronous load (with or without a Clear input signal) and
asynchronous Preset modes can be implemented within a single
FLEX 8000 LE. Figure 2 shows an asynchronous load with a Clear input
signal. Since the Clear signal has priority over the load signal, it does not
need to feed the Preset circuitry.
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Figure 2. Asynchronous Load with a Clear Input Signal

NOT
DATA - l
PRN
CLRN
NOT

CLRN

Figure 3 shows an asynchronous load without a Clear input signal.

Figure 3. Asynchronous Load without a Clear Input Signal

NOT
DATA l
PRN
—o ok
CLRN
NOT T

Figure 4 shows an asynchronous Preset signal. Asynchronous Preset signals
are actually implemented as asynchronous loads in FLEX 8000 devices.
The FLEX 8000 device loads a “1” into the register to implement a Preset.
MAX+PLUSII uses the Clear input to the register for simple Preset signals,
thus preserving the data input for use in the LUT while providing correct
Preset functionality.

Figure 4. Asynchronous Preset

PHN———-————————l

PRN
—Ib Ql—

CLRN
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Use One-Hot State Bit Encoding

One-hot state bit encoding increases both the system speed and routability
of a design. This type of encoding uses one register per state and allows
only one state bit to be active at any time. Although one-hot encoding
increases the number of registers, it also reduces the average fan-in to the
state bits. This reduced fan-in minimizes the number of LEs required to
implement the state decoding logic and yields a design that runs faster and
uses less interconnect.

MAX+PLUS II automatically uses one-hot encoding when compiling state
machines written in AHDL, VHDL, or Verilog HDL and targeted for
FLEX 8000 devices. Altera also recommends using the options provided by
other industry-standard CAE tools, such as the Mentor Graphics Autologic
and Synopsys Design Compiler tools, to synthesize state machines described
in VHDL or Verilog HDL with one-hot state bit encoding. For more
information, refer to Application Brief 131 (State Machine Encoding) in this
handbook.

Use Pipelining for Complex Combinatorial Logic

Maintaining the system Clock speed at or above a certain frequency is
often a major goal in a circuit design. For example, if you have a fully
synchronous system that must run at 25 MHz, the longest delay path from
the output of any register to the input(s) of the register(s) it feeds must be
less than 40 ns. Maintaining system Clock speed can be difficult if some of
the delay paths through the more complex logic are long. In these cases,
Altera recommends pipelining complex blocks of combinatorial logic by
inserting flipflops between combinatorial logic. Although pipelining may
increase device resource usage, it lowers the propagation delay between
registers and allows you to maintain high system Clock speeds.

The benefits of pipelining can be demonstrated with a 4-bit pipelined
adder that adds two 4-bit numbers. This adder is based on two 2-bit adders
that have outputs that are registered using D flipflops. Figure 5 shows one
of the 2-bit pipelined adders. The function 2ADD is the 2-bit adder that
feeds both sum bits (SUM1 and SUM2) and a carry bit (COUT) to the D
flipflops in 4REG.

Figure 5. 2-Bit Pipelined Adder (2REGADD)

2ADD
CIN>—CIN 4REG
A0 O>— A1 SUM1 —— D1 Ql —> sumt
B0 C>——B1 SUM2 —— D2 Q2 ——> sum2
A1 CO>—A2 COuUT —— D3 Q3 ————» COUT
B1 [>—B2 —{ D4 Q4 — \
CLOCK = CLK \

Carry-Out to Carry-In of Next Stage
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Figure 6 shows two 2-bit adders that are combined to form a 4-bit pipelined
adder. The most significant bits (MSBs) of the 4-bit adder (A3, B3, A2, and
B2) require the carry from the least significant bits (LSBs) for their sum.
However, the MSB data inputs to the adder and the carry-in arrive at
different times, due to the time it takes to generate the carry. Pipelining this
design ensures that the MSBs are presented to the inputs of the adder at the
same time as the carry-out signal from the previous stage. In Figure 6, the
two sets of LSBs (0, B0, A1, and B1) are added on the first Clock cycle,
while bits A2, B2, A3, and B3 are added on the next Clock cycle. The
outputs of 2REGADD are registered.

Figure 6. 4-Bit Pipelined Adder

CLOCK —>
2REGADD 2REG

ciN>——{ciN
A0 > At SUMT D1 Q1 ——> sumt
Bo Co>— Bt suM2 D2 Q2 —— sum2
Al o> A2 CouT |— CLK
B1 >——{B2

¢ cLOCK

4REG 2REGADD

A2 C>— D1 CIN
82 | 2 Qi A1 SUM1 —{—> suM3
a3 =~ b3 Q2 B1 SUM2 ——> sum4
83 1 pa Q3 A2 COUT ——> couT

L cLock Q4 B2

cLOCK

s Pipelining is most effective with register-intensive devices such
as FLEX 8000 devices. While it can be used in product-term-based
architectures such as those of the MAX 5000 and MAX 7000
devices, it may be less effective than in the FLEX 8000 architecture.
Since each MAX 5000 and MAX 7000 logic cell has higher fan-in
than a 4-input LUT, complex functions that require several
FLEX 8000 LUTs may need only a single MAX 5000 or MAX 7000
logic cell.
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F“"ng Occasionally, a design may require more interconnect resources than are
; available in the device. When a design does not fit, the MAX+PLUS II
Techniques Compiler issues one or more error messages; up-to-date information on

these error messages is available from on-line help. In many cases, it allows
you to change compilation settings and pin and logic cell assignments or
insert logic cells to adjust the fit during the compilation.

If the project does not fit after you have followed all of the design guidelines
provided in this application note, you can use several techniques to help
the Compiler fit the design:

0 If you are willing to discard your pin assignments, you can allow the
Compiler to automatically ignore all assignments, the minimum
number of assignments possible, or specific individual assignments.

1 If you wish to maintain your pin assignments, Altera recommends
trying each of the following techniques, in order:

1.

Direct the Compiler to automatically insert logic cells between
the design logic and the pins. Inserting logic cells gives the
Compiler more fitting flexibility by separating device inputs and
outputs from the design logic.

Delete any logic cell assignments or allow the Compiler to ignore
them.

Allow the Compiler to ignore explicitly entered carry and cascade
chain logic on a case-by-case basis or throughout the design.

Break long carry chains by inserting logic cells into the chain.

Redesign functions with long carry chains (e.g., adders and
counters) with techniques such as carry look-ahead.

Place input and bidirectional pins on column interconnects when
possible.

If an input pin has a high degree of fan-out, break the fan-out
down by inserting LCELL primitives between the pin and some
of its destinations.

Refer to MAX+PLUS II Help for additional information on entering pin,
logic cell, and clique assignments; implementing carry and cascade logic;
and adjusting the fit during compilation.
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Conclusion

Altera has combined the strengths of both EPLDs and FPGAs into the
FLEX 8000 architecture. Altera’s MAX+PLUS II software allows you to
quickly enter new designs or re-target existing designs for FLEX 8000
devices with design compilation that is automatically optimized for the
FLEX 8000 architecture. In addition, MAX+PLUS II design entry methods
offer detailed control over physical device implementation so that you can
use your knowledge of the FLEX 8000 architecture to achieve the maximum
speed and density for your designs.
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Summ ary To create a succe;ssful high-speed printed circuit bs)ard (PCB), you must
integrate the device(s), board(s), and other elements into a coherent design.
Altera devices typically provide 1- to 3-ns edge rates, which contribute to
noise generation, signal reflection, cross-talk, and ground bounce. Therefore,
your design must filter and evenly distribute power to all devices to reduce
noise, terminate signal and transmission lines to diminish signal reflection,
minimize cross-talk between parallel traces, and reduce the effects of
ground bounce.

You can dramatically reduce system noise by providing clean, evenl

ower y Y y P g y

Fil tering & distributed power to all boards and devices that is as close as possible to
VCC-

Distribution
Filtering Noise

To diminish the low-frequency (< 1 kHz) noise caused by the power
supply, you must filter the noise on the power lines at the point at which
the power connects to the PCB, as well as at each device. Altera recommends
placing a 100-pF electrolytic capacitor immediately adjacent to the location
where the power supply lines enter the PCB. If you use a voltage regulator,
place the capacitor immediately after the final stage that provides the V¢
signal to the device(s). Capacitors not only filter low-frequency noise from
the power supply, but also supply extra current when many outputs
switch simultaneously in a circuit.
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[1°}
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(7]

The components on the PCB add high-frequency noise to the power plane.
To filter high-frequency noise at the device, Altera recommends placing
0.02-uF or 0.2-uF decoupling capacitors as close as possible to each V¢ and
GND pair. See Operating Requirements for Altera Devices in the current
Altera Data Book for more information on bypass capacitors.

Distributing Power

Power distribution also has an impact on system noise. Power may be
distributed throughout the board with either a power bus network or
power planes.

A power bus network consists of two or more wide, metal traces that carry
the V- and GND to the devices. Usually used on two-layer boards, power
buses provide an inexpensive method of supplying power. The trace
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Signal &
Transmission
Line
Termination

widths, which should be as wide as possible, are limited by the density of
the board. Power buses have significant DC resistance; the last component
on the bus may receive V- power that is degraded by as much as 0.5 V.
Consequently, Altera recommends using power buses only for applications
that do not require equal distribution of Vc.

As an alternative, Altera recommends using power planes to distribute
power. Power planes are used on multi-layer PCBs and consist of two or
more metal layers that carry V- and GND to the devices. Because the
power plane covers the full area of the PCB, its DC resistance is very low.
The power plane maintains V¢ and distributes it equally to all devices.
The power plane also provides near-infinite current-sink capability, noise
protection, and shielding for the logic signals on the board.

Having established the PCB power network, you must consider the layout
of the devices and traces. Fast edge rates contribute to noise, cross-talk, and
ground bounce to varying degrees, depending on the PCB construction
material.

Each PCB substrate has a different relative dielectric constant (E,) that
measures the effect of an insulator on the capacitance of a pair of conductors
as compared to the capacitance of the conductor pair in a vacuum. The
type of substrate used determines the length at which the signal traces
must be handled as transmission lines. Table 1 lists E, values for various
dielectric materials.

Table 1. Relative Dielectric Constants

Material Er
Air 1.0
PTFE/Glass 22
Rogers RO 2800 29
CE/Goreply 3.0
BT/Goreply 3.3
CE/Glass 37
Silicon Dioxide 39
BT/Glass 4.0
Polymide/Glass 41
FR-4/Glass 41
Glass Cloth 6.0
Alumina 9.0

Page 128

Altera Corporation




Application Brief 119

High-Speed Board Designs l

As shown in the following equation, the relative dielectric constant (E,) of
the material determines the velocity (Vp) at which signals may flow. The
constant (C) equals 3 x 108 m/s or 30 cm/ns.

C
VEr
The signal trace must be treated as a transmission line when the two-way
propagation delay (PD) of the line exceeds the signal edge rate (tg). The
propagation delay for MAX 7000 devices is the input to output (tpp) while
the propagation delay for FLEX 8000 devices is either the transfer rate
from I/0O pin to I/O pin via row, LE, and column (t;) or the transfer rate
from I/0O pin to I/O pin via row, LE, and row (t,). See the following
equation:

VP:

2xPD >ty

As shown in the following equation, the propagation delay (PD) is the
length (/) of the line divided by the velocity (Vp):

PD=—

Vp
Solving for length (/) using the equation below, you can calculate the
length at which the line must be treated as a transmission line:

tR X C
2E,
As shown in Table 1, a PCB with glass cloth substrate has an E, of 6. Table 2

lists the maximum line lengths for MAX 5000, MAX 7000, and FLEX 8000
devices using a glass cloth substrate under a 35-pF load.

1>

Table 2. Maximum Line Lengths for Glass Cloth Substrate
Device Family tr (ns) I (cm) I (inches)
MAX 5000 27 16.52 6.50
MAX 7000 09 5.51 217
FLEX 8000 1.1 6.73 2.65

The impedance of the source (Zs) must equal the impedance of the trace
(Zy) and the load (Z). Mismatched impedances cause signals to reflect
back and forth and up and down the line, which causes ringing at the load.
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Termination
Schemes

S L
RT= Zo
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The load impedance is typically much higher than the line impedance,
which is higher than the source impedance. On an unmatched transmission
line, a signal reflects 100% at the load and approximately 80% at the source,
bouncing back and forth until it dies out. To reduce signal reflection, you
can match the impedance either at the load (Z; ) or at the source (Zg) to the
line impedance (Z) by adding an impedance in parallel with the load to
reduce its input impedance.

Parallel termination diminishes the first reflection by matching the load
impedance to the line impedance. Of the four parallel termination circuits
described, Altera recommends using either the Thevenin or resistor and
capacitor (series-RC) scheme. For the matching to be effective, you must
terminate each load, since any impedance mismatch will result in a signal
reflection. As an alternative to parallel termination, you can use series
termination, which matches the impedance at the signal source.

Simple Parallel Termination

In a simple parallel termination scheme, the terminating resistor (Ry) is
equal to the line impedance. The current drain of this parallel termination
scheme is excessive for the high-output state; the current drain may be as
high as 48 mA for a 50-Q2 termination. Since Altera devices are guaranteed
to retain a 4-mA current, they cannot reliably support this termination
scheme.

Thevenin Parallel Termination

An alternative parallel termination scheme uses a Thevenin voltage divider.
The terminating resistor is split between R; and R,, which, when combined,
equal the line impedance. Although this scheme reduces the current draw
from the source device, it adds current draw from the power supply
because the resistors are tied between V¢ and GND.

Active Parallel Termination

In an active parallel termination scheme, the terminating resistor (Rt = Z)
is tied to a bias voltage (Vgias). The bias voltage is selected so that the
output drivers are capable of drawing current from the high- and low-level
signals. However, this scheme requires a separate voltage source that can
sink and retain currents to match the output transfer rates.
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Cross-Talk

Series-RC Parallel Termination

In a parallel termination scheme, a resistor and capacitor (series-RC) network
is used as the terminating impedance. The terminating resistor (Ry) is
equal to Z;; the capacitor must be greater than 100 pF. The capacitor blocks
low-frequency signals while passing high-frequency signals. Therefore,
the DC loading effect of Ry does not impact the driver.

Series Termination

A series termination scheme matches the impedance at the signal source
instead of matching the impedance at each load. Because the output
impedance of Altera devices is low, you must add a series impedance to
match the signal source to the line impedance.

On an unmatched line, the source eventually reduces the reflections;
adding the series termination helps attenuate secondary reflections. The
source impedance varies from 10 Q to 18 Q, and the line impedance varies
depending on the distribution of the load. Therefore, you cannot choose a
signal resistor value that applies to all conditions. Altera recommends
using a 33-Q series resistor to cover most impedances. This method requires
only a single component at the source rather than multiple components at
each load, but delays the signal path as it increases the RC time constant.

Cross-talk is the unwanted coupling of signals between parallel traces.
Two types of cross-talk exist: forward (capacitive) and backward (inductive).
Figure 1 illustrates the effect of each type of cross-talk as a function of the
parallel length.

Figure 1. Cross-Talk as a Function of Parallel Length
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Ground Bounce

Backward cross-talk, which has a more dramatic effect than forward
cross-talk, occurs when the magnetic field from one trace induces a signal
in a neighboring trace. In logic systems, the current flow through a trace is
significant when the signals are switching or non-static. The magnetic
fields created by switching currents induce the coupling transients.

You can dramatically reduce cross-talk by limiting the trace height to
10 mils above the GND plane. Figure 2 shows the effect of trace height on
trace-to-trace coupling.

Figure 2. Effect of Trace Height on Trace-to-Trace Coupling
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As digital devices become faster, their output switching times decrease.
Faster switching times cause higher transient currents in outputs as they
discharge load capacitances. These higher currents, which are generated
when multiple outputs of a device switch simultaneously from a logic high

to a logic low, can cause a board-level phenomenon known as ground
bounce.

Many factors affect the magnitude of ground bounce. Therefore, no standard
test method allows you to predict its magnitude for all possible board
environments. You can only test the device under a given set of conditions
to determine the relative contributions of each condition and of the device
itself. Load capacitance, socket inductance, and the number of switching
outputs are the predominant factors that influence the magnitude of ground
bounce in programmable logic devices.
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Design Recommendations

Altera recommends that you take the following steps to reduce the
magnitude of ground bounce:

3 Limit load capacitance by buffering loads with an external device
such as the 74244 IC bus driver or by reducing the number of devices
that drive the bus.

Eliminate sockets whenever possible.

Reduce the number of outputs that can switch simultaneously and /or
distribute them evenly throughout the device.

Move switching outputs close to a package ground pin.

Eliminate pull-up resistors, or use pull-down resistors.

Use multi-layer boards that provide separate V- and GND planes.
Add 10- to 30-Q resistors in series to each of the switching outputs to
limit the current flow into each of the outputs.

Turn on the Slow Slew Rate logic option for FLEX 8000 and MAX
7000E designs.

O o000 od

Go to “Slow Slew Rate” using Search for Help on (Help menu) in
MAX+PLUS II for more information on this option.

These design practices, many of which are described in detail in this
application brief, should help you create effective high-speed logic designs
that operate over a wide range of board conditions.

Analyzing Ground Bounce

Figure 3 shows a simple model for analyzing ground bounce. The external
components driven by the device appear to that device as capacitive loads
(C1 to Cn). These capacitive loads store a charge that is determined by the
following equation:

charge (Q) = [voltage (V) x capacitance (C)]

Altera Corporation
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Figure 3. Ground Bounce Model
Device
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Thus, the charge increases as the voltage and / or load capacitance increases.

The environment and ground path of a device have intrinsic inductances
(shownin Figure 3as L1, L2, and L3). L1 is the inductance of the bond wire
from the device’s die to its package pin, and of the pin itself. L2 is the
inductance of the connection mechanism between the device’s ground pin
and the PCB. This inductance is greatest when the device is connected to
the board through a socket. L3 is the inductance of the PCB trace between
the device and the board location where other devices in the system
reference ground.

Ground bounce occurs when multiple outputs switch from high to low.
The transition causes the charge stored in the load capacitances to flow into
the device. The sudden rush of current (di/dt) exits the device through the
inductances (L) to board ground, generating a voltage (V) determined by
the equation V = L x (di/dt). This voltage difference between board ground
and device ground causes the relative ground level for low, or quiet,
outputs to temporarily rise, or bounce. Although the rush of current is
brief, the magnitude of the bounce can be large enough to trigger other
devices on the board.

In synchronous designs, ground bounce is less often a problem because
synchronous outputs have enough time to settle before the next clock
edge. Also, synchronous circuits are not as likely to be falsely triggered by
a voltage spike on a quiet output.

The magnitude of ground bounce is affected differently by capacitive
loading on the switching outputs and quiet outputs.
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Switching Outputs

When the capacitive loading on the switching outputs increases, the amount
of charge available for instantaneous switching increases, which in turn
increases the magnitude of ground bounce. Depending on the device,
ground bounce increases with capacitive loading until the loading is
approximately 200 pF per device output. At this point, the device output
buffers reach their maximum current-carrying capacity and inductive
factors become dominant.

One method of reducing the capacitive load and hence ground bounce is to
connect the device’s switching outputs to a bus driver IC. The outputs of
the bus driver IC drive the heavy capacitive loads, reducing the loading on
the device, thus minimizing ground bounce for the device’s quiet outputs.

Some bus applications use pull-up resistors to create a default high value
for the bus. These resistors cause the load capacitances to charge up to the
maximum voltage. Consequently, the driving device produces a higher
level of ground bounce. Therefore, you should eliminate pull-up resistors
in applications in which ground bounce is a concern, or design a bus logic
that uses pull-down resistors instead.

The number of switching outputs also affects ground bounce. As the
number of switching outputs increases, the total charge stored also increases.
The total charge is equal to the sum of the stored charges for each switching
output. Therefore, the amount of current that must sink to ground increases
as the number of switching outputs increases. Ground bounce can increase
by as much as 40 mV to 50 mV for each additional output that is switching.

To counteract these effects, Altera devices provide multiple V- and GND
pin pairs. You can reduce ground bounce by moving switching outputs
close to a package GND pin, and by distributing simultaneously switching
outputs throughout the device.

To further reduce ground bounce, limit the number of outputs that can
switch simultaneously in your design to eight or fewer. For functions such
as counters, you can use Gray coding as an alternative to standard sequential
binary coding, since only one bit switches at a time.

In extreme cases, adding resistors (10 to 30 Q is usually adequate) in series
to each of the switching outputs in a high-speed logic device can limit the
current flow into each of the outputs, and thus reduce ground bounce to an
acceptable level.

| Altera Corporation
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References

Quiet Outputs

An increase in capacitive loading on quiet outputs acts as a low-pass filter
and tends to dampen ground bounce. Capacitive loading on a quiet output
can reduce the magnitude of ground bounce by as much as 200 to 300 mV.
However, an increase in capacitive loading on a quiet output can increase
the noise seen on other quiet outputs.

Minimizing Lead Inductance

Socket usage and board trace length are two elements of L2, the inductance
of the connection mechanism between the device’s ground pin and the
PCB shown in Figure 3. Sockets can cause ground bounce voltage to
increase by as much as 100%. You can often dramatically reduce the
magnitude of ground bounce on the board by eliminating sockets.

The length of the board trace has a much smaller effect on ground bounce
than sockets. For PCBs with a ground plane, the voltage drop across the
inductance (L3) of the PCB trace between the device and the board location
where other devices in the system reference ground is negligible, because
L3 is significantly less than L2. The inductance in a 3-inch trace increases
ground bounce for a quiet output by approximately 100 mV. Nevertheless,
trace length should be kept to a minimum. As traces become longer,
transmission line effects may cause other noise problems.

You can also reduce ground bounce due to PCB trace inductance by using
multi-layer boards that provide separate V- and GND planes. Wire-
wrapping the V- and GND supplies usually increases the amount of
ground bounce. To reduce unwanted inductance, you should use low-
inductance bypass capacitors between the V¢ supply pins and the board
GND plane, as close to the package supply pins as possible. A standard
decoupling capacitor (0.02 to 0.2 mF) used in parallel with a high-frequency
decoupling capacitor (470 pF is a standard value) gives the best results.

Advanced Micro Devices, Inc. High-Speed-Board Design Techniques.
Sunnyvale: Advanced Micro Devices, Inc., 1992.

Knack, Kella. Debunking High-Speed PCB Design Myths. ASIC & EDA,
Los Altos: James C. Uhl, July 1993.
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Introduction

Design
Trade-Offs

FLEX 8000 devices feature look-up table (LUT) architecture and logic
elements (LEs) that allow you to design counters optimized for speed,
area, or routability. FLEX 8000 LEs offer dedicated carry chain and cascade
chain logic that efficiently implements fast counters. This application brief
summarizes some of the design techniques Altera recommends to take
advantage of these architectural features.

The best counter to use for a particular FLEX 8000 design depends on the
target application. Most programmable logic designs must make trade-
offs between speed, area, and routability. The application briefs in this
section describe different design techniques that you can use to optimize
counters for your own application requirements. Figure 1 summarizes the
advantages of the different counter design techniques.

Figure 1. Design Techniques for Counters
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If high-speed performance is your primary goal, you can create ripple-
carry counters that take advantage of the dedicated carry chain, which
offers a very fast (less than 1 ns) carry-forward function between contiguous
LEs and contiguous Logic Array Blocks (LABs). Ripple-carry counters also
use the fewest LEs per counter bit of all types of counters. Ripple-carry
Gray code counters offer high-speed performance and reduce switching
noise effects. However, the ripple-carry design approach is recommended
primarily for counters containing no more than 16 bits, because carry
chains must be placed in contiguous LEs (and, if longer than 8 bits, in
contiguous LABs). Longer carry chains may reduce the routing resources
available for implementing other logic. Prescalar counters use more LEs
per counter bit than ripple-carry counters, but offer another path to high-
speed performance by taking advantage of the 1-ns local interconnect
delay within FLEX 8000 LABs. The prescalar design approach is most
suitable for counters containing up to 16 bits.

If easy fitting and/or routability is your primary goal, carry look-ahead
counters offer routing flexibility and good speed performance. By using
additional LE resources, carry look-ahead counters can also be pipelined to
increase their operating frequency. The carry look-ahead (and pipelined
carry look-ahead) design approach is well suited for counters containing
16 or more bits. With forethought and creativity, you can implement
counters efficiently in FLEX 8000 devices, regardless of the constraints
imposed by any particular application.

Il5”  Fordetailed information on LE architecture and carry and cascade
chain logic, refer to Application Note 40 (FLEX 8000 Architecture)
and Application Note 36 (Designing with FLEX 8000 Devices) in this
handbook.
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_137.exe

Single-Bit
Ripple-Carry
Counters

Ripple-carry counters take advantage of the dedicated carry chain feature
available in FLEX 8000 devices. The carry chain in FLEX 8000 devices is a
fast (less than 1 ns) carry-forward function path between contiguous logic
elements (LEs) within a Logic Array Block (LAB) and between adjacent
LABs. Ripple-carry counters provide high-speed carry generation and use
logic element (LE) resources efficiently. Design techniques described in
this application brief can be used to create design files optimized for the
following characteristics:

You can create ripple-carry counters by using the FLEX 8000 LE Up/Down
Counter mode, which makes them easier to create than other types of
counters. The Up/Down Counter mode implements counter logic with
both the sum and carry generation logic in a single LE, which is the most
efficient implementation of counter logic. For more information about the
Up/Down Counter mode, see Application Note 40 (FLEX 8000 Architecture
Details) in this handbook. Figure 1 shows a single bit of a ripple-carry
counter that is implemented within one LE.

Figure 1. Single-Bit Ripple-Carry Counter
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N-Bit Ripple-
Carry Counters

You can implement n-bit ripple-carry counters of any desired width by
copying the single-bit design shown in Figure 1 and connecting the copies
to form longer chains. See Figure 2.

Figure 2. N-Bit Ripple-Carry Counter
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Although ripple-carry counters offer the best performance per LE, you
should use ripple-carry counters only for widths up to 16 bits. Since carry
chains must be placed in contiguous LEs and Logic Array Blocks (LABs),
longer carry chains may reduce the routing resources available for
implementing other logic. However, you can improve the routability of
large ripple-carry counters by inserting LCELL buffers to break the carry
chain or by using more advanced counter designs, such as the pipelined
carry look-ahead counters described in Application Brief 123 (Pipelined
Carry Look-Ahead Counters in FLEX 8000 Devices) in this handbook.
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Ripple-carry Gray code counters are counters in which only one bit switches
at a time. Ripple-carry Gray code counters take advantage of the dedicated
carry chain feature available in FLEX 8000 devices. A carry chain is a fast
(less than 1 ns) carry-forward function path between contiguous logic
elements (LEs) within a Logic Array Block (LAB) and between adjacent
LABs. Ripple-carry Gray code counters provide high-speed carry generation
and use LE resources efficiently. Design techniques described in this

Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104

in the following
self-extracting file:

ab_135.exe

Ripple-Carry
Gray Code
Counters vs.
Binary
Counters

Ripple-Carry
Gray Code
Counters

application brief can be used to create design files optimized for the
following characteristics:

Ripple-carry Gray code counters have less system-level switching noise
and, consequently, less ground plane noise than binary counters have,
because multiple bits may switch simultaneously in binary counters. In
addition, the output of a ripple-carry Gray code counter can be
asynchronously sampled at any time, with a maximum sampling error of
one. In contrast, if a binary counter is sampled at or near the Clock edge,
some of the flipflops may have transitioned before others, which can cause
errors with the asynchronous sample.

You can implement a ripple-carry Gray code counter with T flipflops (TFF
primitives), and include an additional TFF, called the “dummy” bit, with
its T input tied high. The following equation calculates Q, . T, where Q is the
counter inputs and T is the input to the register:

(Qyq-.0, dummy) =B"100...001"
Table 1 shows the detailed counter bit pattern for a 4-bit ripple-carry Gray

code counter. For example, Q2 switches when Q1=1, 00=0, and dummy=1.
03 switches when Q3 or Q2 is high, 01 and Q0 are low, and dummy is high.
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Table 1. 4-Bit Ripple-Carry Gray Code Counter Bit Pattern
Count Value Bit Pattern for Q[3..0] Dummy Bit
0 0000 0
1 0001 1
2 0011 0
3 0010 1
4 0110 0
5 0111 1
6 0101 0
7 0100 1
8 1100 0
9 1101 1
10 1111 0
11 1110 1
12 1010 0
13 1011 1
14 1001 0
15 1000 1

As shown in Table 1, the least significant bit (LSB) toggles when the dummy
register is low. The highest possible value for a ripple-carry Gray code
counter occurs when the most significant bit (MSB) is 1 and all others are 0.
The MSB must toggle when (Q, $ Q, ;) and ((Q,.,..0, dummy) =
B"000...001"), which causes the MSB to switch to zero, rolling the
counter over from the maximum value to zero.

You can adapt the Up/Down Counter mode available in FLEX 8000 LEs
for use with ripple-carry Gray code counters. For more information about
the Up/Down Counter mode, see Application Note 40 (FLEX 8000 Architecture
Details) in this handbook. In a binary counter, the carry chain is used to
propagate the AND of all preceding bits. However, in a Gray code counter,
Q,toggleswhen Q[ (n-2)..0] = 0 and the dummy bit is high. The carry
chain propagates the signal.

Instead of propagating the signal when all the LSBs are high, the carry
signal goes high when the dummy bit is high and all other bits are low. For
example, the carry-out of the fifth logic cell is as follows: 104 & !Q3 &
102 & Q1 & !Q0 & dummy.

In the Up/Down Counter mode, the output of the register is fed directly
into the look-up table (LUT), emulating a TFF. The Up/Down Counter
mode supports a synchronous load, a synchronous Clear, or an Output
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Enable signal. To use a synchronous Clear signal, you must connect the
load inputs to GND. To use an Output Enable signal, you must feed the
counter outputs back to the load inputs. You can implement an
asynchronous load without increasing LE usage. See Application Note 36
(Designing with FLEX 8000 Devices) in this handbook for more information.

Figure 1 shows the general Altera Hardware Description Language (AHDL)
implementation of a ripple-carry Gray code counter.

Figure 1. AHDL Implementation of a Ripple-Carry Gray Code Counter

count0.d = 1dn &(!dummy $ countO) # (!ldn & dataOl);

countcarry0 = dummy ;

countl.d = 1dn & ((count0 & countcarry0) $ countl)# (!1ldn & datal);
countcarryl = countcarry0 & !countO;

count2.d = 1dn & ((countl & countcarryl) $ count2)# (!1ldn & data2);
countcarry? = countcarryl & !countl;

The counter bits are implemented as D flipflops (DFF primitives), which
use the D flipflop structure of the registers in the FLEX 8000 device. When
the carry signals that feed the register and the previous bit are both high,
each register is toggled (XORed with itself). The carry chain for each LE is
the carry signal feeding that LE, ANDed with the inverse of the previous
bit. Hence, the carry chain computes the dummy bit ANDed with the
inverse of all counter bits.

Designs that use the FLEX 8000 carry chain run relatively fast and use the
fewest number of LEs (n + 1). However, since carry chains must be placed
in contiguous LEs and LABs, longer carry chains may reduce the routing
resources available for implementing other logic.

For ripple-carry counters that are not speed-critical, it is not necessary to
use the carry chain. However, ignoring the carry chain increases the
design’s LE usage and decreases its speed.
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_122.exe

Carry
Look-Ahead
Counters

Counters designed with carry look-ahead techniques offer routing flexibility
and medium speed performance. Carry look-ahead counters can take
advantage of the FLEX 8000 dedicated carry chain feature, but do not
require it. The dedicated carry chain feature increases speed and provides
efficient logic element (LE) utilization. However, since carry chains must
be placed in contiguous LEs and Logic Array Blocks (LABs), longer carry
chains may reduce the routing resources available for implementing other
logic. For this reason, Altera recommends that large counter designs use
carry look-ahead techniques that bypass the dedicated carry chain feature.
This application brief describes a medium-performance, loadable up/
down counter that does not use the dedicated carry chain feature. Design
techniques described in this application brief can be used to create design
files optimized for the following characteristics:

The technique used to construct the carry look-ahead counter for the
FLEX 8000 device architecture is similar to the technique used for the
product-term architectures of Altera’s MAX 5000 and MAX 7000 device
families. In both architectures, a T flipflop (TFF) is used for each bit of the
counter. The input to the TFF is a wide-input AND gate that ANDs together
all of the least significant bits (LSBs) in the counter. Each bit toggles when
all of the LSBs is high. If up/down functionality is required, a second AND
gate is required for each bit. The second AND gate ANDs the complement of
each of the LSBs. The up/down signal multiplexes the two AND gates into
the TFF.

In the FLEX 8000 device architecture, a TFF is emulated using a D flipflop
(DFF primitive) in conjunction with an XOR gate. The XOR gate and the load
and data signals for each counter bit fit efficiently into a single LE. Figure 1
shows a single bit of a carry look-ahead counter for a FLEX 8000 device. In
this sample counter bit, load data (DATA4) has been multiplexed into the
DFF to implement a synchronous load.
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Figure 1. Single-Bit Carry Look-Ahead Counter with Synchronous Load
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The wide-input AND gates in this type of carry look-ahead counter are
created using the dedicated cascade chain feature in the FLEX 8000
architecture. For more information on cascade chains, refer to Application
Note 40 (FLEX 8000 Architecture) in this handbook. Figure 2 shows a
16-input AND gate with a cascade chain that illustrates how the wide-input
terms (1_AND_0Oto3, 1_AND_0Oto7, 1_AND_Otoll, and 1_AND_0tol5)
in Figure 1 are generated. The 16-input AND gate decodes the LSBs of the
counter and toggles the counter bit when all of the LSBs are high.

Figure 2. 16-Input AND Gate with Cascade Chain
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_123.exe

Pipelined Carry
Look-Ahead
Counters

You can create carry look-ahead counters that are pipelined to increase
operating frequency. Pipelining consists of inserting flipflops between
combinatorial logic, which decreases register-to-register delays and
increases operating frequency. Design techniques described in this
application brief can be used to create design files optimized for the
following characteristics:

Table 1 shows the counter sequence for a 4-bit pipelined carry look-ahead
counter, which illustrates the basis of the carry look-ahead technique. For
more information on carry look-ahead counters, see Application Brief 122
(Carry Look-Ahead Counters in FLEX 8000 Devices) in this handbook. For
more information on pipelining, see Application Note 36 (Designing with
FLEX 8000 Devices) in this handbook.

Table 1. Count Sequence for a 4-Bit Pipelined Carry Look-Ahead Counter

Q[3..0] Carry Look-Ahead Bit
0000 0 0
0001 0 0
0010 0 0
0011 0 0
0100 0 0
0101 0 0
0110 1 0
0111 0 1
1000 0 0
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Each bit in the counter toggles only when all the least significant bits (LSBs)
are high. If you use a T flipflop (TFF primitive) for each bit, the logic used
to decode the T input is a wide-input AND gate with all of the LSBs as
inputs. Since the logic element (LE) in a FLEX 8000 device is based upon a
4-input look-up table (LUT), the sixth bit would require an AND gate with
more inputs than a single LE can accommodate. If the counter has an
Enable input, the fourth bit requires more than four inputs.

To reduce the number of inputs, you can split the wide AND gates in the
counter among several LEs, as shown in Figure 1. However, splitting the
AND gates among several LEs increases the combinatorial register-to-register
delay and reduces the maximum operating frequency.

Figure 1. AND Gates Split Among Logic Elements
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You can increase the operating frequency by pipelining the carry look-
ahead counter, which decreases the register-to-register delay. Figure 2
shows a pipelined version of the carry look-ahead counter shown in
Figure 1. In a binary count sequence, the fifth bit, 04, toggles only when
Q[3..0] = 1111. Whenthe ANDingof Q[3. . 0] is true, the T node goes
high, causing the register to toggle. In Figure 2, the pipelining causes Q1
and QO to be delayed by one Clock cycle. To account for this latency, the
carry look-ahead register ANDs Q1 with Q0 one count cycle early, i.e.,
whenQ([3..0] = 1110.

Figure 2. Sample Pipelined Carry Look-Ahead Counter
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_124.exe

Prescaled
Counters

Prescaled counters are counters that are specifically designed for high-
frequency counting. Prescaled counters achieve their high performance
because only the least significant bits (LSBs) transition at higher frequencies,
while the most significant bits (MSBs) have more time to prepare for their
transitions. FLEX 8000 devices can implement prescaled counters at
frequencies of up to 142.9 MHz for counters of up to 16 bits. Design
techniques described in this application brief can be used to create design
files optimized for the following characteristics:

Figure 1 shows a single bit of a prescaled counter implemented in a
FLEX 8000 device. When binary counters are clocked, each counter bit is
driven low if all of its LSBs are high. However, since all but the LSB will
have been high in the previous Clock cycle, the performance-critical path is
from the LSBs (Q0) to all other register bits. In fact, the MSBs will have been
high for several Clock cycles.

To achieve the maximum possible counting frequencies, the loading of
prescaled counters occurs outside of the speed-critical path. With this
implementation, synchronous loading of a prescaled counter requires
multiple Clock cycles. Loading functions are typically not required but are
frequently used to divide very-high-speed incoming Clocks.

To achieve the highest performance, the two LSBs (Q0 and Q1) are repeated
in each Logic Array Block (LAB) of this counter. By replicating these bits,
the only interconnect delay in the performance-critical path is the local
LAB interconnect of 1 ns. Thus, the speed-critical path for each bit requires
only 7 ns (or 142.9 MHz). When fast Clock speed is the most important
consideration, you can use additional logic resources to ensure the
maximum possible performance.
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I Prescaled Counters in FLEX 8000 Devices
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Introduction

Design
Trade-Offs

FLEX 8000 devices feature look-up table (LUT) architecture and logic
elements (LEs) that allow you to design register-intensive functions such
as adders, accumulators, and subtractors. FLEX 8000 LEs also offer dedicated
carry chain logic that efficiently implements fast adders, accumulators,
and subtractors.

The best adder, accumulator, or subtractor for a particular
FLEX 8000 design depends on the target application. Most programmable
logic designs must make trade-offs between speed, area, and routability.
The application briefs in this section describe different design techniques
that you can use to optimize adders, accumulators, and subtractors for
your own application requirements. Figure 1 summarizes the advantages
of the different adder, accumulator, and subtractor design techniques.

Figure 1. Design Technigues for Adders, Accumulators, & Subtractors
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If speed is your primary goal, you can create ripple-carry adders or adder-
type functions that take advantage of the dedicated carry chain in
FLEX 8000 LEs. The carry chain offers a very fast (less than 1 ns) carry-
forward function between contiguous LEs within a Logic Array Block
(LAB) and between contiguous LABs. Ripple-carry adders also use fewer
LEs per adder bit than other types of adders. However, the ripple-carry
design approach is best suited for adders with no more than 16 bits
because carry chains must be placed in contiguous LEs and, if longer than
8 bits, in contiguous LABs. Longer carry chains may reduce the routing
resources available for implementing other logic. Pipelined ripple-carry
accumulators use more LEs per bit than non-pipelined ripple-carry
accumulators, but offer enhanced speed performance and improved
routability. The pipelined design approach is suitable for accumulators
containing more than 8 bits.

If easy fitting and/or routability is your primary goal, you can create
carry-select adders that use short carry chains and parallel computation.
Carry-select adders use more LEs per adder bit than ripple-carry adders,
but provide maximum flexibility during the design fitting process.
Additionally, in adder designs that contain more than 8 bits, the parallel
computation used in carry-select adders offers faster performance than
ripple-carry adders because it reduces carry-generation delays. The carry-
select design approach is suitable for adders containing more than 8 bits.

With forethought and creativity, you can implement functions efficiently
in FLEX 8000 devices, regardless of the constraints imposed by any particular
application.

5>  FPordetailed information on LE architecture and carry chain logic,
refer to Application Note 40 (FLEX 8000 Architecture) and Application
Note 36 (Designing with FLEX 8000 Devices) in this handbook.
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Summa ry Ripple-carJ':y adders that‘use the carry chain feature in a FI'JEX 8000 device

are the easiest adders to implement in the FLEX 8000 architecture. A carry

. , chain is a fast (less than 1 ns) carry-forward function path between

Files using the contiguous logic elements (LEs) within a Logic Array Block (LAB) and

between adjacent LABs. Ripple-carry adders also offer the best performance

per LE. Design techniques described in this application brief can be used to
create design files optimized for the following characteristics:

techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104

in the following

self-extracting file:

ab_118.exe

Ri pp le-Ca rry Ripple-carry adders are implemented using the FLEX 8000 Arithmetic
mode. In this mode, both the sum and carry generation logic for each bit of

Adder the adder are implemented within a single LE. The Arithmetic mode offers
two 3-input look-up tables (LUTs) that are ideal for implementing adders
and accumulators. One LUT provides a 3-bit function (SUM); the other
generates a carry-out (COUT). For more information on LE operating modes,
see Application Note 40 (FLEX 8000 Architecture) in this handbook.

Sinale-Bit A single-bit adder has three inputs: two data inputs (A and B) and a carry-

ingle-Bi : itadde :

in (CIN) signal; it generates a sum and a carry-out. Figure 1 shows the

Adders implementation of a single bit of a full adder in a single LE.

Figure 1. Adder Bit Implemented in One LE
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Implementing
N-Bit Ripple-
Carry Adders

The following Altera Hardware Design Language (AHDL) equations
describe a single-bit full adder:

sum as$ (b $ cin);
cout = carry((a & b) # (a & cin) # (b & cin));

You can implement n-bit ripple-carry adders of any desired width by
interconnecting full adder bit-slices to form longer chains. High-speed
adders of arbitrary width can be implemented in one LE per sum-bit.
Figure 2 shows how an n-bit combination adder is built from the single-bit
adder shown in Figure 1.

Figure 2. N-Bit Combination Adder

1st Adder

g CIN SUM SumMo
A0 —— A 2nd Adder
B0O —— B cout CIN SuMm SUM1
Al A nth Adder
B1 B COUT|—eee— CIN SUMI—— SUMn
An A
Bn B COUT—— COUT

Although ripple-carry adders offer the best performance per LE, they are
recommended only for widths of up to 16 bits. Since carry chains must be
placed in contiguous LEs and LABs, longer carry chains may reduce the
routing resources available for implementing other logic. However, you
can improve the routability of large ripple-carry adders by pipelining the
design or by breaking the carry chain with an LCELL buffer.
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_115.exe

Carry-Select
Adders

Carry-select adders in FLEX 8000 devices use short carry chains and
parallel computation to produce fast designs that are very easy for the
MAX+PLUS II Compiler to route. The carry chain feature in a FLEX 8000
device is a fast (less than 1 ns) carry-forward function path between
contiguous logic elements (LEs) within a Logic Array Block (LAB) and
between adjacent LABs. When a FLEX 8000 design requires a larger adder,
carry-select adders provide better routability and performance than ripple-
carry adders. Design techniques described in this application brief can be
used to create design files optimized for the following characteristics:

A carry-select adder consists of three separate adders. Using a 16-bit adder
as an example, one adder computes the least significant byte; two adders
compute the most significant byte. These two adders consist of one adder
with a carry-in of 1 and another with a carry-in of 0. The carry-outs of the
least significant byte and most significant byte are computed
simultaneously, then a 2-to-1 multiplexer selects the correct result, which
has been computed previously. Figure 1 shows a block diagram for a 16-bit
carry-select adder.

Figure 1. Simple Carry-Select Adder

A[7..0] B[7..0]

8-Bit Adder

A[15..8] B[15..8] A15..8] B[15..8]

A SRR SR |
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~— CQarry-Qut
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Carry-Select
Adders vs.
Ripple-Carry
Adders

In ripple-carry adders, all carry chains must be placed in contiguous LEs
and LABs. Therefore, long carry chains may reduce the routing resources
available for other logic. Since carry-select adders use carry chains that are
cut in half, implementing a carry-select adder instead of a ripple-carry
adder in a FLEX 8000 device can improve routability, even though carry-
select adders use more LE resources. See Application Brief 118 (Ripple-Carry
Adders in FLEX 8000 Devices) in this handbook for more information.

Another advantage of the carry-select adder is its speed. For adders
containing more than 16 bits, the carry-select adder computes the LSB and
the MSB in parallel, yielding a result more quickly than in ripple-carry
adders. For smaller adders (up to 8 bits), implementing a carry-select
adder does not offer much improvement over a ripple-carry adder.
However, in larger adders, the routability and speed improvement of the
carry-select adder may justify the increase in LE usage.

In 32-bit adders, you can divide the length of the carry chain into four,
rather than two, equal parts, making each carry chain only 8 bits long. This
technique yields further improvements in performance, routability, and
speed.
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_111.exe

Single-Bit
Accumulators

Small accumulators (i.e., 4- and 8-bit accumulators) can use the carry chain
feature in FLEX 8000 devices to produce fast, efficient circuits. The carry
chain is a fast (less than 1 ns) carry-forward function path between
contiguous logic elements (LEs) within a Logic Array Block (LAB) and
between adjacent LABs. A single LAB can implement an 8-bitaccumulator.
However, since carry chains must be placed in contiguous LEs and LABs,
16- and 32-bit carry chains may reduce the routing resources available for
implementing other logic. This application brief discusses both ripple-
carry and pipelined accumulators. Design techniques described in this
application brief can be used to create design files optimized for the
following characteristics (numbers in parentheses are for pipelined
accumulators):

The basic building block of an accumulator is an adder. The adder’s sum is
registered and fed back as one of the inputs into the adder. A single-bit
adder has three inputs: two data inputs and a carry-in. The adder outputs
a sum and a carry-out. The following Altera Hardware Design Language
(AHDL) equations show how the sum and carry-out are calculated:

Figure 1 shows a single-bit accumulator. The carry chain feature of the
FLEX 8000 architecture can implement the single-bit adder’s sum and
carry-generation logic within a single LE.

Altera Corporation
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N-Bit
Accumulators

Pipelined
16- and 32-Bit
Accumulators

Figure 1. Single-Bit Accumulator

CARRY
CIN [o——>—4
PRN
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P
CARRY
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‘—lﬂy ] ) 19 > cout
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You can design n-bit accumulators by cascading the carry-out of the
(n-1)th stage to the carry-in of the nth stage to extend the single-bit
accumulator shown in Figure 1. For example, to design a two-bit
accumulator, you can simply connect the carry-out of the first stage to the
carry-in of the second stage. Figure 2 shows an n-bit accumulator.

Figure 2. N-Bit Accumulator

1st Accumulator

&— CIN Q Qo

A0 —A

CLK CLK 2nd Accumulator
RST RST COUTr—— CIN Q Q1
Al A
CLK nth Accumulator
RST COUT[—eee— CIN Q—— Qn
An A
CLK
RST CcOUT—— COUT

You can create fast and compact accumulators using the
FLEX 8000 carry chain feature. However, 16- and 32-bit carry chains may
reduce the routing resources available for implementing other logic because
carry chains must be placed in contiguous LEs and LABs.

You can use pipelining to increase the performance and routability of
accumulator designs. Pipelining consists of inserting flipflops within
combinatorial logic. The carry-out signal feeds a register, which in turn
feeds the carry-in of the next bit. Pipelining decreases the combinatorial
delay between registers, but also delays the carry signal by one Clock
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Accumulators in FLEX 8000 Devices

Other
Accumulator
Design
Techniques

cycle. For example, two 8-bit accumulators are needed to build a 16-bit
pipelined accumulator. The carry-out of the least significant 8-bit
accumulator is registered and then fed to the carry-in of the most significant
8-bit accumulator. However, registering only the lower-order bits delays
the carry by one Clock cycle, yielding two unsynchronized 8-bit
accumulators. To synchronize the higher and lower order bits, the data
inputs to the higher-order bits must also be registered to delay them by one
Clock cycle. To complete the synchronization, the accumulator’s lower-
order sum bits must also be registered. See Application Note 36 (Designing
with FLEX 8000 Devices) in this handbook for more information on
pipelining. Figure 3 shows a 16-bit pipelined accumulator. Although this
pipelined accumulator uses twice as many LEs as a non-pipelined version,
its performance is increased by 33%.

Figure 3. 16-Bit Pipelined Accumulator

8ACCUM
CIN 5 CIN s a
D[7..0] === D[7..0] Qf7..0] D Q Q[7..0]
CLK CLK COouT
8ACCUM
D Q CIN 8
® D[7..0] Q[7..0] ey Q[15..8]
CLK COuT cout
D[15..8] 8 b aq

You can also insert LCELL buffers in the carry chain at 8- or 16-bit intervals
to break the chain into shorter segments. Inserting LCELLs can improve
routing, but also decreases performance.
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_126.exe

Subtractors

Subtractors are easy to design because their logic is similar to adder logic.
The carry chain feature in FLEX 8000 devices can implement fast subtractors
that use logic element (LE) resources efficiently. You can also use subtractors
to construct dividers. Design techniques described in this application brief
can be used to create design files optimized for the following characteristics:

A full n-bit subtractor is similar to a full adder. You can easily design
subtractors in MAX+PLUS II by starting from basic principles. You can
also modify the FLEX 8000-optimized version of the existing full adder
macrofunction, 8FADD, which is available in the MAX+PLUS II
Macrofunction Library.

Table 1 shows the truth table for a 2-bit subtractor. The inputs are A, B, and
BORROW_IN; the outputs are DIFF and BORROW_OUT. The subtractor
performs the function DIFF = A - B.

Table 1. 2-Bit Subtractor Truth Table
A B BORROW_IN DIFF BORROW_0QUT
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
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N-Bit

Subtractors

Figure 1 shows a 2-bit subtractor that is optimized for FLEX 8000 devices.

Figure 1. 2-Bit Subtractor Optimized for the FLEX 8000 Architecture

CARRY
BORROW_IN

e D

7.

CARRY

BORROW_OUT

You can construct an n-bit subtractor by connecting n 2-bit subtractors in a
chain, with the BORROW_OUT of one stage feeding the BORROW_IN of the
next stage. When BORROW_IN = 0, the subtractor functions as follows:

I
1}

0 with BORROW_OUT 0
1 with BORROW_OUT = 0
0
1

0 with BORROW_OUT
1 with BORROW_OUT

(el e
[
PR o o
1]

feeding the next stage

Il
il

The following equation shows a sample subtraction of 0 - 1 with
BORROW_IN = 0:

10,
_ 12

1,

When BORROW_IN = 1, the preceding stage has borrowed a 1 from the
current stage. In this case, the subtractor functions as follows (see Table 1):

1 - 0 = 0withaBORROW_OUT = 0
1 - 1 = 1withaBORROW_OUT = 1 feeding the next stage

The following equation shows a sample subtraction of 1 - 1 with a
BORROW_IN = 1:
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11 «———— BORROW_IN bits are
110, fed to the next stage
-1,

11,
The BORROW_OUT = 1 from the first stage eliminates the second bit in the

110 input, resulting in the subtraction shown in the equation
10, - 1, = 1, for the second stage, with a BORROW_OUT bit passed to the

third stage.

The remaining subtractions follow a similar pattern, yielding the following
equations:

DIFF = A $ (B $ BORROW_IN)

BORROW_OUT A & B

(
# !A & BORROW_IN
# B & BORROW_IN

The equations for a subtractor resemble those of a full adder. The only
difference is that in a subtractor, the A input in the BORROW_OUT equation
is inverted. For this reason, subtractors are very easy to implement once
you have created a full adder. The 2-bit subtractor shown in Figure 1 is
optimized for the FLEX 8000 architecture with CARRY primitives. These
CARRY primitives implement high-speed carry chains, yielding fast
BORROW_IN to BORROW_OUT times.

Adders are used frequently in multiplier applications. During the
multiplication process, the multiplicand is added to itself n times, where n
is the value of the multiplier. Conversely, subtractors are used to construct
dividers, in which the divisor is subtracted from the dividend as many
times as possible. You can create structures analogous to carry-select
adders for subtractors, thereby creating borrow-select subtractors. Figure 2
shows an n-bit subtractor.

Figure 2. N-Bit Subtractor

1st Subtractor

CIN DIFF DIFFO
A0 —A 2nd Subtractor
Bo —— B cout CIN DIFF DIFF1
A1l A nth Subtractor
-]
B1 B COUT|—ee+—CIN DIFF—— DIFFn ==
An A g =
o 3
Bn B cout— cout [
=S 6
(7]
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35
Introduction FLEX 8000 devices feature look-up table (LUT) architecture and logic 2"

elements (LEs) that allow you to design register-intensive functions such
as multipliers. FLEX 8000 LEs also offer dedicated carry chain logic that
efficiently implements fast multiplier functions by optimizing the adders
used within them. This application brief introduces some of the design
techniques that Altera recommends to take advantage of these architectural

features.
Design Most programmable logic designs must make trade-offs between speed,
area, and routability. The application briefs in this section describe different
TradE'Dﬂs design techniques that you can use to optimize multipliers for your own
gn q y P % y

application requirements. Figure 1 summarizes the advantages of the
different multiplier design techniques.

Figure 1. Design Techniques for Multipliers
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Multiplier
Theory

If speed is your primary goal, you can create pipelined multipliers. These
multipliers provide optimal performance and are easily routable, but they
use more LE resources per multiplier bit than other types of multipliers.
For high-speed, non-pipelined multipliers that use minimum area, you
can create L-Booth algorithm multipliers (a variation of Booth’s algorithm
multipliers). Ripple-carry multipliers also offer good speed performance
and efficient area usage. Both L-Booth algorithm and ripple-carry multipliers
take advantage of the dedicated carry chain feature in FLEX 8000 LEs,
which offers a fast (less than 1 ns) carry-forward function path between
contiguous LEs within a Logic Array Block (LAB) and between contiguous
LABs. However, the carry chain design approach is recommended primarily
for multipliers with short carry chains since carry chains must be placed in
contiguous LEs and LABs. Longer carry chains (e.g., carry chains using
more than eight LEs) may reduce the routing resources available for
implementing other logic.

If easy routability is your primary goal, pipelined multipliers offer
maximum routability. You can also create more area-efficient Booth’s
algorithm multipliers that use short carry chains and parallel computation.
Booth’s algorithm multipliers use more LEs per multiplier bit than L-
Booth algorithm and ripple-carry multipliers, but they offer the ability to
process both positive and negative numbers. You can also modify a basic
ripple-carry multiplier design to create a faster, more routable 4-bit x 4-bit
multiplier in which the last multiplier bit is generated independently of the
carry chain.

With planning and creativity, you can implement multipliers efficiently in
FLEX 8000 devices regardless of the constraints imposed by any particular
application.

I For detailed information on LE architecture and carry chain logic,
refer to Application Note 40 (FLEX 8000 Architecture) and Application
Note 36 (Designing with FLEX 8000 Devices) in this handbook.

Figure 2 illustrates a basic 4-bit x 4-bit multiplier. The two 4-bit operands
areX[3..0] and Y[3..0]. Multiplying the first bit of the multiplier, Y0,
by each consecutive bit of the multiplicand yields the first partial product.
Multiplying the second bit of the multiplier, Y1, by each consecutive bit of
the multiplicand generates the second partial product. The second partial
product is shifted to the left with respect to the first partial product. The
generation of partial products continues until all of the multiplier terms
are exhausted. The final product is obtained by adding the partial products
vertically with respect to columns and observing carries to the next column.
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Figure 2. 4-Bit x 4-Bit Multiplier Process

Muitiplicand X3 X2 X1 X0
Multiplier — x Y3 Y2 Y1 YO0

Partial Product, Row A YOX3 YO0X2 YOX1 YOX0
Partial Product, Row B Y1X3 YI1X2 Yi1X1 Y1X0 0
Partial Product, Row ¢ —> Y2X3 Y2X2 Y2X1 Y2X0 0 0

Partial Product, Row D —— + Y3X3 Y3X2 Y3X1 Y3X0 0 0 0

Final Product > §7  S6 S5 5S4 S3 s2 St SO

AND gates can be used to perform a bit-by-bit multiplication that simplifies
the process of generating the partial products. Bit-by-bit multiplication
generates all the partial products independently and in parallel at very
high speed. The additions, however, are not independent since each stage
requires the carry from the previous column. Since some columns can
produce up to eight carries, the carries can make addition quite slow. Most
methods used to accelerate multiplication are simply techniques for quickly
adding the partial products.

Altera’s FLEX 8000 architecture includes an Arithmetic mode designed
specifically to perform fast additions. This mode uses the sum and carry
functions that are available within each LE to solve 2-bit (A + B) additions
efficiently. In addition, the FLEX 8000 LAB provides a dedicated path for
the carry signal to feed the next stage of the adder. For more information
on the Arithmetic mode, refer to Application Note 40 (FLEX 8000 Architecture)
in this handbook.
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_132.exe

Ripple-Carry
Multipliers

The FLEX 8000 device architecture provides dedicated carry and cascade
chain resources to efficiently implement arithmetic functions such as ripple-
carry multipliers. The dedicated carry chain feature in FLEX 8000 LEs
offers a fast (less than 1 ns) carry-forward function between contiguous
LEs with a Logic Array Block (LAB) and between contiguous LABs. By
supporting very fast additions, the FLEX 8000 carry chain, in particular,
speeds up multiplier designs.

This application brief describes a ripple-carry multiplier and a modified
ripple-carry multiplier that are optimized for the FLEX 8000 architecture.
Multiplier designs can either use the FLEX 8000 carry chain exclusively or
incorporate additional logic to speed up the design. Design techniques
described in this application brief can be used to create design files optimized
for the following characteristics (numbers in parentheses are for the
modified ripple-carry multiplier):

Ripple-carry multipliers use the FLEX 8000 carry chain to perform very
fast addition of the partial products. Separate logic elements (LEs) generate
each of the partial products and ripple-carry adders generate the sums of
the partial products. Figure 1 shows the architecture of a 4-bit x 4-bit
ripple-carry multiplier. This multiplier is fast because it contains only
three levels (or stages) of delay:

1. Generating partial products
2. Adding the partial products to form A[5..0] and B[5..0]
3. Adding A[5..0] andB[5..0] to compute the final product
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Figure 1. 4-Bit x 4-Bit Ripple-Carry Multiplier Architecture

Stage 1 X[3..0] Y[3..0] X[3..0] Y[3..0]
Partial Product Partial Product
Generation Generation
| | | 1
Stage 2 R’ Y v
Ripple-Carry Ripple-Carry
Adder Adder
A[5..0] B[5..0]
Stage 3 \ 4 \ 4
Ripple-Carry
Adder
S[7..0]
(Final Product)

Figure 2 shows a generic multiplication broken into the three stages of the
multiplier. In the first stage, the partial products are generated. Each
partial product is derived by ANDing the appropriate multiplicand and
multiplier terms (e.g., for the first term, YOX0 = Y0 AND XO0). In the second
stage, ripple-carry adders generate the sums of the partial products to
form the first carry product and the second carry product. In the third
stage, the first and second carry products are added with a ripple-carry
adder to form the final product. For more information on ripple-carry
adders, refer to Application Brief 118 (Ripple-Carry Adders in FLEX 8000
Devices) in this handbook.

Figure 2. 4-Bit x 4-Bit Ripple-Carry Multiplier Process
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Modified
Ripple-Carry
Multipliers

The slowest path in the ripple-carry multiplier described in Figure 1 is the
carry propagation required to generate S7. However, in a 4-bit x 4-bit
multiplier, you can generate the seventh bit independently of the carry
quickly and easily by using the logic shown in Figure 3. (You can use this
logic to generate the seventh bit only with 4-bit X 4-bit multipliers.) A
modified ripple-carry multiplier that contains this logic is otherwise
identical to the ripple-carry multiplier shown in Figure 1. The regular
ripple-carry multiplier generates all other products.

Figure 3. Logic Schematic for S7 Bit
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Summa ry Booth’s algorithm decreases the time required to compute partial products
and, consequently, increases the speed of combinatorial multipliers in

' . FLEX 8000 Devices. This application brief describes combinatorial
Files using the multipliers that use Booth’s algorithm and a modified “L-Booth” algorithm.
Design techniques described in this application brief can be used to create
design files optimized for the following characteristics (numbers in
parentheses are for the L-Booth multiplier):

techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104

in the following

self-extracting file:
ab_133.exe

’ Booth'’s algorithm expands upon general multiplier theory by reducing the

oomn’s g P pong P y by g

. number of partial products by half. This reduction in partial products

Algorlthm ields a significant speed increase, especially in 4-bit x 4-bit multipliers.
y gni P P y P

Multi p liers The 4-bit x 4-bit Booth’s algorithm operates on two’s complement numbers.

It multiplies any two numbers between -8 and 7, and returns a two’s
complement result.

Figure 1 shows a block diagram for a 4-bit x 4-bit multiplier implemented
using Booth’s algorithm. The multiplier is partitioned into groups of three
bits in the decoder portion of the design. In this decoder, zeroes are
padded to the right of each bit to act as placeholders. Booth's algorithm
then computes all the possible partial products by performing five
operations on the multiplicand: 0 (X[3..0]1),1(X[3..0]),2(X[3..0]),
-2(X[3..0]1),and -1 (X[3..0]).Simultaneously, Booth’s algorithm is
applied to each group of three bits to determine which one of the five
possible partial products is correct. These tasks are performed in parallel
for speed. A simple combinatorial shift to the left produces the 2X term.
With the FLEX 8000 carry chain, Booth’s algorithm uses the two’s
complement method to generate the -2X and -X terms. The decoder
portion of the design controls the multiplexer and selects the correct partial
products or zero. The selected partial products are added with a ripple-
carry adder to form the final product.
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Figure 1. Block Diagram for a 4-Bit x 4-Bit Multiplier Inplemented Using Booth’s
Algorithm
X[3..0] Y[3..0]

\ /
-2X |_-X—| 2X
4

4

e te 1ot YV VOV
\ A /

Multiplexer Decoder

v Multiplexer \ 4

A

4
\

Ripple-Carry
Adder

\/

Product

For any multiplier larger than 4 bits x 4 bits, the total number of partial
products exceeds two. In such cases, the addition must be cascaded through
two or more layers of ripple-carry adders. For more information on ripple-
carry adders, refer to Application Brief 118 (Ripple-Carry Adders in
FLEX 8000 Devices) in this handbook.
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L-Booth
Algorithm
Multipliers

The L-Booth algorithm multiplier is a variation of a Booth’s algorithm
multiplier that works only for positive multiplicands. Figure 2 shows a
block diagram of a 4-bit x 4-bit multiplier implemented using the L-Booth
algorithm. It decodes the multiplicand into two sets, each of which is two
bits wide. The first set, Y[1..0], determines whether the addition of the
first two partial products would have been zero, X, 2X, or 3X. The second
set, Y[3..2], determines whether the addition of the last two products
would have been zero, X, 2%, or 3X. The L-Booth algorithm multiplier
generates 2X and 3X as it decodes the multiplicand. It performs a simple
combinatorial shift to the left to produce the 2X term and, using the FLEX
8000 carry chain, itadds X and 2X to form 3X. These two steps represent the
first level of the multiplier. The second level consists of multiplexers
controlled by the decoded multiplicand. These multiplexers select the
correct values of the two decoded partial products. The two selected
partial products are then added with a ripple-carry adder to generate the
final product.

Figure 2. Block Diagram for a 4-Bit x 4-Bit Multiplier Implemented Using the
L-Booth Algorithm
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_134.exe

Pipelined
Multipliers

FLEX 8000 devices provide a register-intensive architecture that allows
you to take advantage of pipelining techniques. Pipelining your design by
interspersing registers within the combinatorial logic can significantly
increase the system Clock rate while improving the overall routability of
the design. Because the registers synchronize the data to a common system
Clock, only register-to-register delays limit the Clock period.

This application brief describes a pipelined multiplier. Design techniques
described in this application brief can be used to create design files optimized
for the following characteristics:

Pipelining allows you to increase the performance of your multiplier
design by distributing intermediate computations across latency stages.
This distribution decreases the complexity and increases the speed of the
intermediate computations. In other words, you can increase the speed of
your design by adding latency stages. The fastest possible speed is limited
by the delay of a logic element (LE), t;z, plus the longest routing delay
between any two LEs. For more information on pipelining, refer to
Application Note 36 (Designing with FLEX 8000 Devices) in this handbook.

Pipelining a design requires only a limited amount of additional area
because it uses registers that each LE already includes at its output. The
only added area is the overhead of synchronizing the sums. All other logic
uses the existing LE registers. Since pipelining can increase the design
speed without significantly increasing area, it is recommended for many
multiplier designs.

Figure 1 shows a block diagram of a pipelined combinatorial multiplier.
This multiplier is designed with the maximum number of latency stages
and, consequently, the fastest performance. The multiplication is computed
by generating the partial products and adding them together in the 4-input
look-up tables (LUTs) provided in each FLEX 8000 LE. Separate LUTs
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generate carries so that they can be routed to registers. (This design does
not use the dedicated carry chain in FLEX 8000 LEs because the carry
chains can only feed contiguous LEs and cannot feed registers.) SO and S1
are the only two sums that can be generated by one stage. S2, for example,
requires two stages. A register bank maintains the timing between the
stages. The final products are generated in the same way. Five stages are
required to generate the last bit, S7.

Figure 1. Block Diagram for a Pipelined Combinatorial Multiplier
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Y[3..0] o-p| Partial Product S0
Generate
Partial Product S1
—®{ and Sum
Carry
L p Generate Generate
Partial Product Partial Product s2
“——»| and Sum and Sum
(X ] L3 [ 3 L3
[ X L3 [ 3 L3
[N ] L] L] L]
S7
CLOCKE=

Page 184 Altera Corporation




@l I:I _E R)/’;_& Contents

I May 1994 I

Section 7 State Machine Applications
AB131 State Machine ENCOding .........ccccccoeueuimeicnucinincinininenicccccceenas 187

v
Eg
= oo
85
S S
33

Altera Corporation Page 15!







{A‘l [ _E 2 A State Machine Encoding

‘ May 1994, ver. 1 Application Brief 131 ]

Summ ary ' Each state of a state machine can be represented with a unique pattern of
high (1) and low (0) register output signals, a process called “encoding.”
The two primary encoding methods are binary and one-hot encoding. This
application brief describes both methods and discusses how to select the
encoding scheme that best suits your design, so that you can ensure
efficient performance and resource usage.

B | na rv The relationship between the number of state bits (B) and number of states
(S) in a binary-encoded state machine is represented by the following

Encﬂd i ng equation:

=L
=
—
B o
=

8 5
= o
g =
=
“ 3

B =log; ()

With this formula, you can easily determine the minimum number of state
bits required for a binary-encoded state machine. For example, to implement
a 4-state state machine with a binary encoding scheme, you can use two
flipflops (i.e., state bits) to uniquely define the four states as follows:

statel = "00"
state2 = "01"
state3 = "10"
stated = "11"

This example implements the state machine with a left-to-right sequential
binary encoding. You can also use a Gray code binary encoding scheme, in
which only one state bit changes at a time:

statel = "00"
state2 = "01"
state3 = "11"
stated = "10"

Gray code binary encoding is especially useful when the outputs of the
state bits are used asynchronously. For example, if a state machine switches
from "01" to "10"—as it does in sequential binary encoding—and the
registers do not switch outputs at exactly the same time, temporary outputs
of either "11" or "00" can exist. This type of fluctuation can cause
unpredictable results throughout your circuit.
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One-Hot
Encoding

Selecting an
Encoding
Method

A one-hot encoding scheme uses one register for each state—e.g., four
registers for a 4-state state machine—with only one state bit at a high logic
level at one time. You can implement a 4-state state machine with a one-hot
encoding scheme as follows:

statel = "0001"
state2 = "0010"
state3 = "0100"
stated = "1000"

You should choose an encoding method based on the complexity of your
state machine, the target device family, and requirements for recovering
from illegal states.

Complex State Machines

Binary encoding uses fewer registers than one-hot encoding. Thus, binary
encoding requires only seven registers to implement a 100-state state
machine, whereas one-hot encoding needs 100 registers. On the other
hand, although one-hot encoding requires more registers, the logic is
generally less complex. In a binary-encoded state machine, the logic that
controls the transitions from state to state depends on all seven state bits as
well as the inputs to the state machine. This type of logic typically requires
high-fan-in functions to the inputs of the state bits. In a one-hot-encoded
state machine, however, the inputs to the state bits are often simply the
functions of other state bits.

Device Architecture

Different architectures favor certain types of encoding. The MAX+PLUS II
Compiler automatically selects the most appropriate encoding method for
the targeted device family, unless you specify a particular scheme in one of
your design files. For example, since the Altera FLEX 8000 device family is
register-intensive, state machines targeted for these devices are best
implemented with a one-hot encoding scheme. Since a one-hot-encoded
state machine reduces the complexity of the logic feeding the state bits,
one-hot encoding can increase the performance of your state machine
design for FLEX 8000 devices.

The MAX 5000 and MAX 7000 device families are best suited to a binary
state machine encoding scheme. Both of these device families can efficiently
implement complex combinatorial logic with shared and parallel expander
product terms. Thus, devices in these device families can accommodate
complex combinatorial logic functions without wasting resources or
sacrificing performance.
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State Machine Encoding

Recovery from lllegal States

When choosing an encoding method, you must consider the number of
potential illegal states your state machine can enter. Your design can end
up in an illegal state if you violate the setup or hold times of the state-bit
registers and have not defined all possible states. MAX+PLUS II design
entry methods allow you to define illegal states and to specify how your
state machine should recover from them.

For example, a 14-state state machine implemented with a binary encoding
scheme requires four state bits, for a total of 16 possible states. In this case,
the state machine has only two possible illegal states. One-hot-encoded
state machines, however, generally have more potential illegal states. A
14-state one-hot encoded state machine requires 14 state bits. The number
of illegal states for a one-hot encoded state machine is determined by the
equation (2") - n, where n equals the number of states in the state machine.
Therefore, a 14-state state machine with one-hot encoding has 16,370
possible illegal states. However, as long as your design does not violate the
setup or hold time of the state bit registers, your state machine should not
enter an illegal state.
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_128.exe

Multiplexers
with Cascade
Logic

You can implement wide-fan-in combinational logic structures, such as
multiplexers, using the cascade chain feature in FLEX 8000 devices. Cascade
chains are dedicated, high-speed paths between adjacent logic elements
(LEs) in the FLEX 8000 architecture, and can be used to improve both
design performance and resource utilization. In wide multiplexers (8-to-1
and wider), pipelining can be used to further optimize the design. Design
techniques described in this application brief can be used to create design
files optimized for the following characteristics (numbers in parentheses
are for the pipelined multiplexer):
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Each LE in the FLEX 8000 architecture contains a 4-input look-up table
(LUT) that can compute any function of 4 variables. Figure 1 shows a 4-to-1
multiplexer in which the results of the LUTs of two LEs are ANDed using
a cascade chain. DeMorgan'’s inversion is used to convert the AND to an OR.
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Figure 1. 4-to-1 Multiplexer
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Pipelined
Multiplexers

Using cascade chain logic also yields more compact designs. Since the
maximum length of the cascade chain in a 4-to-1 or 8-to-1 multiplexer does
not exceed two, the impact on routability is minimal. For more information
about cascade chains, refer to Application Note 36 (Designing with FLEX 8000
Devices) and Application Note 40 (FLEX 8000 Architecture) in this handbook.

Pipelining is recommended for multiplexers wider than 8-to-1. Pipelining
consists of inserting flipflops between combinatorial logic, which decreases
register-to-register delays and increases operating frequency. For more
information about pipelining, refer to Application Note 36 (Designing with
FLEX 8000 Devices) in this handbook.

Figure 2 shows a 16-to-1 multiplexer, which uses three 8-bit pipelined
registers and two 8-to-1 multiplexers. This multiplexer has a latency of two
Clock cycles. The 4-to-1 multiplexer shown in Figure 1 can be used as a
building block to construct the two 8-to-1 multiplexers in Figure 2.
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Figure 2. 16-to-1 Multiplexer with Two Pipeline Stages
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Summary

Files using the
techniques described in
this application brief are
available from the Altera
BBS at (408) 954-0104
in the following
self-extracting file:

ab_113.exe

8-Bit Equality
Comparisons

An equality comparator determines whether two bus signals are equal in
value. You can optimize the area and performance of an equality comparator
in a FLEX 8000 device by using FLEX cascade chains. Cascade chains are
fast (less than 1 ns) carry-forward function paths between contiguous logic
elements (LEs) within a Logic Array Block (LAB) and between adjacent
LABs. For larger buses, the cascade chain must be split and merged in an
additional LE. Design techniques described in this application brief can be
used to create design files optimized for the following characteristics:

Equality comparators can be described as wide logical AND functions, as
shown in the following Altera Hardware Description Language (AHDL)
equation:

(a[n..0] == b(n.

aegb = .01)

In this equation, a0 equals b0, al equals b1, a2 equals b2, etc., through an
equals bn, where n represents the most significant bit (MSB) of the bus.
Figure 1 shows an equality comparator implemented with a cascade chain.
Four 2-bit comparators are cascaded together to form an 8-bit comparator
that yields the output aegb. Because each LE can accept up to four signals
to its look-up table (LUT), two comparisons can be performed in each LE.
In Figure 1, for example, a0 is compared to b0, al is compared b1, and the
results of these two comparisons are ANDed. With the cascade chain, this
sum is then ANDed together with the sums of the three subsequent LEs to
generate the equality comparator output aegb. Cascade chains can be
used to improve both design performance and resource utilization. For
more information about cascade chains, refer to Application Note 36
(Designing for FLEX 8000 Devices) and Application Note 40 (FLEX 8000
Architecture) in this handbook.
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Equality
Comparisons
for Larger
Buses

Figure 1. 8-Bit Equality Comparison with a Cascade Chain
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For buses larger than 8 bits, the cascade chain must be split to avoid
exceeding the maximum number of inputs into an LAB. For example, a
16-bit equality comparator that uses 4 unique signals in each of the 8 LEs of
an LAB would require 32 inputs. However, the LAB local interconnect can
only receive 24 signals from the FLEX 8000 row interconnect. Therefore,
the cascade chain must be split between two LABs to ensure that the
number of inputs to each LAB is less than 24.

You can create a 32-bit comparator using 4 of the 8-bit comparators shown
in Figure 1. Each 8-bit comparator requires 4 sets of 4 adjacent LEs. The
output of these LEs can then be merged in an additional LE to generate the
aegb output. See Figure 2.
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Figure 2. 32-Bit Equality Comparison
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Summarv A full comparator is used to compare the values of two bus signals. In
FLEX 8000 devices, you can use cascade chains and carry chains to optimize
the area and performance of a full comparator. Carry and cascade chains

Files using the are fast (less than 1 ns) carry-forward function paths between contiguous

techniques described in logic elements (LEs) within a Logic Array Block (LAB) and between

this application brief are adjacent LABs. Design techniques described in this application brief can be
available from the Altera  used to create design files optimized for the following characteristics:

BBS at (408) 954-0104

in the following

self-extracting file:
ab_114.exe
==
= 8
Using Fu" For the two buses a[n..0] and b([#n. .0], where n represents the most =
significant bit (MSB) of the bus, a full comparator yields three results: F=MS]
comparators a = b(aegb),a < b(altb),anda > b (agtb). An n-bit comparison =
wherea([n..0] < bln..0] canbe expressed as follows: v =

altb = a([n] < b[n]
i# (a[n-1] < bln-11 & aln] = bln])
# (a[n-2] < b[n-21 & aln..n-1]1 = bln..n-11)

# (al0] < b[0] & a[n..1] = bln..1])

In these equations, a cascade chain and a carry chain are used simultaneously
to create two of the three comparator outputs. This type of comparator is
implemented with the Arithmetic mode in FLEX 8000 LEs.
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Figure 1 illustrates how each comparator output is generated. The AEQB
signal is generated using a cascade chain. The AGTB signal is generated
from a carry chain that shares an LE with the cascade chain. The ALTB
signal uses an additional LE to generate a true signal when both AEQB and
AGTB are false. Of the three outputs, AGTB has the smallest delay because it
is generated using the high-speed carry chain. However, if ALTB is the
speed-critical path, you can use the carry chain to generate ALTB instead.

Figure 1. Full Comparator Implemented with Cascade Chain & Carry Chain Logic

CASCADE
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A0 > — CARRY
B0 CO>—4
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[
|
. [—> AEQB
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AN NOT I—\ CARRY  LCELL
BN > L J AGTB
For more information about using carry and cascade chains, refer to
Application Note 36 (Designing for FLEX 8000 Devices) in this handbook. For
more information about the FLEX 8000 Arithmetic mode, refer to Application
Note 40 (FLEX 8000 Architecture) in this handbook.
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sllmmarv Barrel shifters are circuits that perform a binary shift on a given input.

Unlike a conventional shifter, which shifts data bits one position to the

. . right or left, a barrel shifter can shift data to any position. Data bits shifted
Files using the . . out at one end of a barrel shifter re-appear at the other end. This application
te‘,:hm ques dpscr ’t,) ed in brief describes two barrel shifter designs that are optimized for the
th/s'app lication brief are FLEX 8000 architecture: one is optimized for area, the other is optimized
Z‘gg thle 4nggmj g;’gf for speed. Design techniques described in this application brief can be used
(408) 954- to create design files optimized for the following characteristics (numbers

in the following . .. . .
self-extracting file: in parentheses are for the speed-optimized barrel shifter):

ab_117.exe

> =
== »n
- O
=@
o =
Q
===
o @
S o
w =
(7]

Area-Optimized  Table1shows the truth table for an 8-bit barrel shifter that is optimized for
p area. This design has 8 databits,a [ 7. . 0], and 3 shift control bits, s [s. . 0].

Barrel Shifter In this shifter, any shift greater than 7 can be performed by letting
s[2..0] = nmod 7, where n is the number of shifts.

Table 1. Truth Table for 8-Bit Barrel Shifter

s2 | 81 S0 | A7..AD a7 06..01 Qo0 Number of Shifts
0 0 0 A7..A0 Q7 Q6..Q1 Qo 0

0 0 1 A7..A0 Qo Q7.Q2 Qi1 1

0 1 0 A7..A0 Q1 Q0..Q3 Q2 2

0 1 1 A7..A0 Q2 Q1..Q4 Qs 3

1 0 0 A7..A0 Q3 Q2..Q5 Q4 4

1 0 1 A7..A0 Q4 Q3..Q6 Q5 5

1 1 0 A7..A0 Q5 Q4..Q7 Q6 6

1 1 1 A7..A0 Q6 Q5..Q0 Q7 7
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A right barrel shift of 6 positions on the byte B'10001100' can be
described as follows:if S2=1,51=1,50=0,andA[7..0] =10001100,
the output of the circuitis Q[7..0] = 00110010. In this example, the two
leftmost bits of the input byte have been shifted to the two rightmost
positions. See Figure 1.

Figure 1. 8-Bit Barrel Shifter

A7 o—
A6 >
A5 >
A
A3 >
A2 [O—
Al >
A0 CO— [
S0 ¢
B B B B B B B B
LA LA LA LA A LA LA A
SEL SEL SEL SEL SEL SEL SEL SEL
c c c c c o c c
s1 o9
B E E E E E E B
A La LA LA LA A A A
SEL SEL SEL SEL SEL SEL SEL SEL
c c c c c o c c
s2 ¢ ' . . . s
B B B B B B B B
LA A LA LA — A A LA A
SEL SEL SEL SEL SEL SEL SEL SEL
c c c c c c c c
|—(:>C‘l7

—{ > Q6
{> Q5
> Q4
> Q3
> Q2
> Q1
> Qo
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Barrel Shifters in FLEX 8000 Devices

Speed-
Optimized
Barrel Shifter

The barrel shifter design in Figure 1 consists of eight 2-to-1 multiplexers
arranged into 3 rows with 8 multiplexers per row. Each row of multiplexers
has a common select line where S0 feeds the first row, S1 the second, and
S2 the third. A “1” in the first row (SO = 1) represents a shift of one bit to
the right. When S1 = 1, the data is shifted by 2 bits; when S2 = 1, the data
is shifted by 4 bits. When any of the shift control bits are zero, data is
passed through the row of multiplexers to the next row. For example,
when S0 = 1, the first row of multiplexers shifts one space to the right;
when S1 = 0, the second row of multiplexers passes straight down without
shifting; when S2 = 1, the third row of multiplexers shifts four spaces to
the right. With these inputs, the total shift in Figure 1 is five positions.

The speed-optimized barrel shifter design builds upon the first design and
uses pipelining for synchronizaton. In pipelining, registers are inserted
between combinatorial logic, decreasing register-to-register delays and
increasing operating frequency. The second design is partitioned into
stages with a register inserted between each intermediate stage. In this
case, an intermediate stage corresponds to a shift performed by a single
row.

Figure 2 shows an 8-bit pipelined barrel shifter created by inserting registers
before each row of multiplexers. A[7 . . 0] is registered before feeding the
first 2-to-1 multiplexer. When pipelining a design, you must insert the
pipelining registers so that the correct inputs correspond to the correct
data byte at each stage. In Figure 2, S2 requires three pipeline registers, S1
requires two, and SO requires one for its row of multiplexers. With
pipelining, this design runs at 98 MHz. For more information about
pipelining, refer to Application Note 36 (Designing with FLEX 8000 Devices)
in this handbook.
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Figure 2. 8-Bit Barrel Shifter with Pipelining

A[7..0] .

CLK

8-Bit 2-to-1
Multiplexer

v

> 8-Bit Register

v

8-Bit 2-to-1
Multiplexer

v

D> 8-Bit Register

v

Q 8-Bit 2-to-1
Multiplexer

v

D> 8-Bit Register

S1

S2 D Q

S3

Vo
Vo

8
> Q[7..0]

Page 206 Altera Corporation




f A}I I:I —+— Db A Parity Generators

8N in FLEX 8000 Devices
| May 1994, ver. 1 Application Brief 130 ]
Su mmary Parity generators are used to detect errors in data transmission. The data

sender generates a parity signal by counting the number of ones in a data
. . word and reporting whether that number is even or odd. The data receiver
Files using the checks the parity signal to verify that the data was received without errors.
tfﬁhmql;.es ofescnl;ed n In FLEX 8000 devices, you can implement high-speed parity generators
b ls.fl;)l/) /c;at/ont ,t: I % tar ¢ using the carry chain feature, a fast (less than 1 ns) carry-forward function
Z\gga ¢ ¢ 4 5gm9 546 0 mega path between contiguous logic elements (LEs) within a Logic Array Block
obo (408) hadd LAB) and between adjacent LABs. You can also implement area-optimized
in the following ) P P

arity generators that do not use the dedicated carry chain. Design

party g y 8

self-extracting file: techniques described in this application brief can be used to create design
ab 130.exe files optimized for the following characteristics (numbers in parentheses
- are for the parity generator without carry chains):

> =

= »n

= O

=2

[T

Q QU

==

o @

= O

w =

(%]
Paritv Figure 1 shows a very-high-speed parity generator that uses carry chain
logic. This parity generator accumulates the values of each bit in an 8-bit
Generators data word using a carry chain, and reports that the result is an odd
with Ca rry number. This design can be extended to create parity generators for wider
. data words. Carry chain logic provides fast performance. However, since
Chains carry chains must be placed in contiguous LEs and LABs, long carry chains

y 1% & g carry

may reduce the routing resources available for implementing other logic.
For more information about carry chains, refer to Application Note 36
(Designing with FLEX 8000 Devices) and Application Note 40 (FLEX 8000
Architecture) in this handbook.
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Figure 1. High-Speed Parity Generator Implemented with Carry Chain Logic

Sy

D1 CARRY

D2

D3 Co>— D‘L_)

CARRY
D4 = D_Dj_‘
D5 > e/ CARRY
D6 v/
»—{— ODD
D7 —o—— .
i Figure 2 shows an 8-bit parity generator that does not use carry chain logic.
arity 8 parity g ry gi
Generators This parity generator adds the values of each bit in an 8-bit data word

without Carry
Chains

using XOR gates. This design runs more slowly than the design shown in
Figure 1, but also uses less area and leaves more routing resources available
for implementing other logic. If you wish to implement even parity
generation, you can invert the ODD output signal.

Figure 2. Parity Generator without Carry Chain Logic
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North American
Distributors

U.S. Sales

FRANCE

Altera France

Zac La Sabliere

4, Rue Maryse Bastie
91430-IGNY

France

TEL: (33) 169 85 5630
FAX: (33) 1 69 85 5614

GERMANY

Altera GmbH
Max-Planck-StraBe 5
D-85716 Unterschleisshelm
Germany

TEL: (49) 89/3218250
FAX: (49) 89/32182579

ITALY

Altera ltalia

Corso Lombardia 75
Autoporto Pescarito

10099 San Mauro, Torinese
(Torino)

Italy

TEL: (39) 11 223 8588
FAX: (39) 11 223 8589

JAPAN

Altera Japan K.K.

Ichikawa Gakugeidai Building
2nd Floor

12-8 Takaban 3-chome
Meguro-ku, Tokyo 152
Japan

TEL: (81) 33 716-2241

FAX: (81) 33 716-7924

Arrow/Schweber Electronics Group
Future Electronics (Canada only)

Newark Electronics

Pioneer-Standard Electronics
Semad (Canada only)

Wyle Laboratories

ALABAMA
EnVision, Inc.

CALIFORNIA (continued)
Infinity Sales

= 1009 Henderson Road, Suite 400B 20 Corporate Park, Suite 100
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TEL: (205) 721-1788 TEL: (714) 833-0300
FAX: (205) 721-1789 FAX: (714) 833-0303
ARIZONA Sierra Technical Sales
Oasis Sales, Inc. 23566 Woodhaven Place
301 E. Bethany Home Road #A135 Auburn, CA 95602
Phoenix, AZ 85012 TEL: (916) 268-3357
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FAX: (602) 263-9352
COLORADO
ARKANSAS Compass Marketing and Sales, Inc.
Technical Marketing, Inc. 5600 S. Quebec Street, Suite 350D
3320 Wiley Post Road Englewood, CO 80111
Carroliton, TX 75006 TEL: (303) 721-9663
TEL: (214) 387-3601 FAX: (303) 721-0195
FAX: (214) 387-3605
CONNECTICUT
CALIFORNIA Technology Sales, Inc.
Addem 237 Hall Avenue
1015 Chestnut Street #F2 Wallingford, CT 06492
Carlsbad, CA 92008 TEL: (203) 269-8853
TEL: (619) 729-9216 FAX: (203) 269-2099
FAX: (619) 729-6408
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Altera Corporation BGR Associates
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Columbia, MD 21045

TEL: (410) 995-1900

FAX: (410) 964-3364

FLORIDA

EIR, Inc.

1057 Maitland Center Commons
Maitland, FL 32751

TEL: (407) 660-9600
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EnVision, Inc.
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FAX: (319) 377-1539
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TEL: (513) 278-0714
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Houston, TX 77042
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FAX: (713) 783-5307
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Altera Corporation

238 Littleton Road, Suite 204
Westford, MA 01886

TEL: (508) 392-1100

FAX: (508) 392-1157
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Robert Electronic Sales

5525 Twin Knolls Road, Suite 325
Columbia, MD 21045

TEL: (410) 995-1900

FAX: (410) 964-3364

MASSACHUSETTS

Altera Corporation

238 Littleton Road, Suite 204
Westford, MA 01886

TEL: (508) 392-1100

FAX: (508) 392-1157
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237 Hall Avenue
Wallingford, CT 06492
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U.S. Sales
Representatives

(continued)
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1009 Henderson Road, Suite 400B
Huntsville, AL 35816

TEL: (205) 721-1788

FAX: (205) 721-1789

MISSOURI

AEM, Inc.

11520 St. Charles Rock Road, Suite 131
Bridgeton, MO 63044

TEL: (314) 298-9900

FAX: (314) 298-8660

MONTANA

Compass Marketing

5 Triad Center, Suite 320
Salt Lake City, UT 84180
TEL: (801) 322-0391
FAX: (801) 322-0392

NEBRASKA

AEM, Inc.

4001 Shady Oak Drive
Marion, IA 52302
TEL: (319) 377-1129
FAX: (319) 377-1539

NEVADA

Qasis Sales, Inc.

301 E. Bethany Home Road #A135
Phoenix, AZ 85012

TEL: (602) 277-2714

FAX: (602) 263-9352

Sierra Technical Sales
23566 Woodhaven Place
Auburn, CA 95602

TEL: (916) 268-3357
FAX: (916) 268-0192

NEW HAMPSHIRE
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238 Littleton Road, Suite 204
Westford, MA 01886

TEL: (508) 392-1100

FAX: (508) 392-1157

NEW JERSEY

BGR Associates
Evesham Commons
525 Route 73, Suite100
Marlton, NJ 08053
TEL: (609) 983-1020
FAX: (609) 983-1879

ERA, Inc.

354 Veterans Memorial Highway
Commack, NY 11725

TEL: (516) 543-0510
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NEW MEXICO
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TEL: (505) 293-1399

FAX: (505) 293-1011
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Commack, NY 11725

TEL: (516) 543-0510

FAX: (516) 543-0758

Technology Sales, Inc.

920 Perinton Hills Office Park
Fairport, NY 14450

TEL: (716) 223-7500

FAX: (716) 223-5526

NORTH CAROLINA

EnVision, Inc.

3200 Wake Forest Rd., Suite 205
Raleigh, NC 27609

TEL: (919) 878-3080

FAX: (919) 878-3090

NORTH DAKOTA

Cahill, Schmitz & Cabill, Inc.
315 N. Pierce

St. Paul, MN 55104

TEL: (612) 646-7217

FAX: (612) 646-4484

OHIO

The Lyons Corporation

4812 Frederick Road, Suite 101
Dayton, OH 45414

TEL: (513) 278-0714

FAX: (513) 278-3609

The Lyons Corporation
4615 W. Streetsboro Road
Richfield, OH 44286

TEL: (216) 659-9224
FAX: (216) 659-9227

The Lyons Corporation
248 N. State Street
Westerville, OH 43081
TEL: (614) 895-1447
FAX: (513) 278-3609

OKLAHOMA

Technical Marketing, Inc.
3320 Wiley Post Road
Carrollton, TX 75006
TEL: (214) 387-3601
FAX: (214) 387-3605

OREGON

Phase |l Technical Sales

4900 SW Griffith Drive, Suite 110
Beaverton, OR 97005
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FAX: (503) 626-7442
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FAX: (609) 983-1879
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PENNSYLVANIA (continued)
The Lyons Corporation
248 N. State Street
Westerville, OH 43081
TEL: (614) 895-1447
FAX: (513) 278-3609

RHODE ISLAND

Altera Corporation

238 Littleton Road, Suite 204
Westford, MA 01886

TEL: (508) 392-1100

FAX: (508) 392-1157

SOUTH CAROLINA
EnVision, Inc.

113 Stonegate Drive
Columbia, SC 29223
TEL: (803) 699-3360
FAX: (803) 699-0377

SOUTH DAKOTA

Cahill, Schmitz & Cahill, Inc.
315 North Pierce

St. Paul, MN 55104

TEL: (612) 646-7217

FAX: (612) 646-4484

TENNESSEE

EnVision, Inc.

8120 Sawyer Brown Rd., Suite 105
Nashville, TN 37221

TEL: (615) 622-7666

FAX: (615) 622-7652

TEXAS

Technical Marketing, Inc.

3701 Executive Center Drive #205
Austin, TX 78731

TEL: (512) 343-6976

FAX: (512) 343-7986

Technical Marketing, Inc.
3320 Wiley Post Road
Carrollton, TX 75006
TEL: (214) 387-3601
FAX: (214) 387-3605

Technical Marketing, Inc.
2901 Wilcrest Drive, Suite 139
Houston, TX 77042

TEL: (713) 783-4497

FAX: (713) 783-5307

UTAH

Compass Marketing and Sales, Inc.
5 Triad Center, Suite 320

Salt Lake City, UT 84180

TEL: (801) 322-0391

FAX: (801) 322-0392

VERMONT

Altera Corporation

238 Littleton Road, Suite 204
Westford, MA 01886

TEL: (508) 392-1100

FAX: (508) 392-1157

VIRGINIA

Robert Electronic Sales

5525 Twin Knolls Road, Suite 325
Columbia, MD 21045

TEL: (410) 995-1900

FAX: (410) 964-3364

WASHINGTON

Phase |l Technical Sales
550 Kirkland Way, Suite 100
Kirkland, WA 98033

TEL: (206) 828-8182

FAX: (206) 828-7472

WEST VIRGINIA

Robert Electronic Sales

5525 Twin Knolls Road, Suite 325
Columbia, MD 21045

TEL: (410) 995-1900

FAX: (410) 964-3364

WISCONSIN

Oasis Sales Corporation
1305 N. Barker Road
Brookfield, Wi 53005
TEL: (414) 782-6660
FAX: (414) 782-7921

WYOMING
Compass Marketing and Sales, Inc.

5 Triad Center, Suite 320
Salt Lake City, UT 84180
TEL: (801) 322-0391
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Canadian Sales

ALBERTA
Kaytronics
6815-8th Street NE, Suite 179

ONTARIO (continued)
Altera Corporation (Canada)

- 300 March Road, Suite 603
Representatives caigary, Averta T2 717 Kanata, Ontario K2K 2E2
Canada Canada
TEL: (403) 275-7000 TEL: (613) 564-0080
FAX: (403) 295-0732 FAX: (613) 564-0087
BRITISH COLUMBIA QUEBEC
Kaytronics Kaytronics
#102-4585 Canada Way 5800 Thimens Boulevard
Burnaby, BC V5G 4L6 Ville St. Laurent, Quebec H4S 1S5
Canada Canada
TEL: (604) 294-2000 TEL: (514) 745-5800
FAX: (604) 294-4585 FAX: (514) 745-5858
ONTARIO
Kaytronics
405 Britannia Road E #206
Mississauga, Ontario L4Z 3E6
Canada
TEL: (905) 507-6400
FAX: (905) 507-6444
H ARGENTINA BRAZIL
International YEL S.R.L. Unido Digital Ltda.
. . Virrey Cevallos 143 Rua Georgia 69
Distributors 1077 Buenos Aires 04559-010
Argentina Séao Paulo - SP
TEL: (54) 1-372-7140 Brazil
TLX: (390) 18605 (YEL AR) TEL: (55) 11 536-4121
FAX: (54) 1-476-2551 FAX: (55) 11 533-6780
AUSTRALIA CHINA
Veltek Pty. Ltd. CIDC
18 Harker St. No. 1, Gao Jia Yuan
Burwood, Victoria 3125 Dongzhimenwai, Chao Yang Qu
Australia Beijing 100015
TEL: (61) 3-808-7511 People’s Republic of China
FAX: (61) 3-808-5473 TEL: (86) 1-436-5577
FAX: (86) 1-436-4487
AUSTRIA
Eurodis Electronics GmbH DENMARK
LamezanstraBe 10 E.V. Johanssen Elektronik A/S
A-1232 Wien Titangade 15
Austria DK-2200 Koebenhavn N
TEL: (43) 1-610620 Denmark
TLX: (847) 134404 (HIT) TEL: (45) 31 83 90 22
FAX: (43) 1-61062151 TLX: (855) 16522 (EVICAS DK)
FAX: (45) 31 8392 22
BELGIUM
D&D Electronics FINLAND
Vlie Olympiadelaan 93 Yleiselektroniikka Oy
B-2020 Antwerpen P.O. Box 73
Belgium Luomannotko 6
TEL: (32) 3-827-7934 SF-02201 Espoo
TLX: (846) 73121 (DDELEC BU) Finland
FAX: (32) 3-828-7254 TEL: (358) 0-452-621
TLX: (857) 123212 (YLEQY SF)
FAX: (358) 0-452-62231
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FRANCE

Arrow Electronique S.A.
73-79, Rue des Solets
Silic 585

94663 Rungis Cedex
France

TEL: (33) 149 784978
FAX: (33) 1 49 780596
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Viale Fulvio Testi, 280

20126 Milano
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(continued)
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Intectra, Inc.

2629 Terminal Bivd.
Mountain View, CA 94043
U

TEL: (415) 967-8818
TLX: 345545 (INTECTRA MTNV)
FAX: (415) 967-8836

NETHERLANDS

Koning en Hartman
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Spain
TEL: (34) 1-637-1011
FAX: (34) 1-637-1506

(34) 1-637-1408

SOUTH AFRICA

Prime Source (Pty) Ltd.
3 Olympia Street
Marlboro, Sandton

P.O. Box 46169
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Republic of South Africa
TEL: (27) 11-444-7237
FAX: (27) 11-444-7298
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TLX: 149 32
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Elbatex
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Switzerland
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FAX: (41) 56 26 14 86
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5405 Dattwil
Switzerland

TEL: (41) 56 83 55 55
FAX: (41) 56 83 30 20

TAIWAN

Galaxy Far East Corp.
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Fu Hsing South Road

Taipei
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TEL: (886) 2-705-7266

TLX: (785) 26110 (GALAXYER)
FAX: (886) 2-708-7901

Jeritronics Ltd.

Floor 7B, #267, Sec. 3
Cheng-Teh Road
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Taiwan R.O.C.

TEL: (886) 2-585-1636
FAX: (886) 2-586-4736

THAILAND

Nu-Era Co. Ltd.

769/8 J.T. Building
Soisoonvijai 4/1

Rama 9 Road, Huaykwang
Bangkok 10310

Thailand

TEL: (66) 2-318-6453
FAX: (66) 2-318-6454

UNITED KINGDOM

Ambar Cascom Ltd.

Rabans Close

Aylesbury, Bucks HP19 3RS
England

TEL: (44) 296 434141

TLX: (851) 837427 (AMBAR G)
FAX: (44) 296 29670

Thame Components Ltd.
Thame Park Road
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England

TEL: (44) 844 261188

TLX: (851) 837917 (MEMEC G)
FAX: (44) 844 261681
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Active Parallel Down (APD) A configuration
scheme in which a byte-wide parallel PROM
loads the design data into a FLEX 8000 device.
The FLEX 8000 device first generates an address;
the PROM subsequently returns the next byte of
data. Addresses are generated by the FLEX 8000
device sequentially in descending order (3FFFFh
to 00000h). MAX+PLUS II can generate
Hexadecimal (Intel-Format) Files (.hex) that
contain the data for configuring FLEX 8000
devices in an APD configuration scheme.

Active Parallel Up (APU) A configuration scheme
in which a byte-wide parallel PROM loads the
design data into a FLEX 8000 device. The
FLEX 8000 device first generates an address; the
PROM subsequently returns the next byte of data.
Addresses are generated by the FLEX 8000 device
sequentially in ascending order (00000h to
3FFFFh). MAX+PLUS II can generate
Hexadecimal (Intel-Format) Files (.hex) that
contain the data for configuring FLEX 8000
devices in an APU configuration scheme.

Active Serial (AS) A configuration scheme in
which a serial EPROM loads the design data into
aFLEX 8000 device. The MAX+PLUS Il Compiler
automatically generates a Programmer Object
File (.pof) for programming serial EPROM
devices, e.g., the EPC1213 Configuration EPROM,
whenever a FLEX 8000 project is compiled.

Altera Hardware Description Language (AHDL)
Altera’s design entry language. AHDL is
completely integrated into MAX+PLUSII, and
allows the designer to enter and edit Text Design
Files (.tdf) with the MAX+PLUS II Text Editor or
any standard text editor, then compile, simulate,

and program projects within MAX+PLUS IL.
AHDL supports Boolean equation, state machine,
conditional, and decode logic. AHDL also
provides access to all Altera macrofunctions.

array Clock A Clock signal that passes through
the logic array of a device before arriving at the
Clock input of a register.

Assembler The Compiler module that creates one
or more Programmer Object Files (.pof), SRAM
Object Files (.sof), and optional JEDEC Files (.jed)
for programming Altera devices.

BitBlaster A cable that allows both PC and
workstation users to configure a FLEX 8000 device
in a prototype system. This capability functions
independently from the MAX+PLUS II
Programmer or any other programming
hardware. The Altera BitBlaster connects a
standard RS-232 serial port on a PC or
workstation to a single target FLEX 8000 device
in a prototype system.

c

Carry Chain option A FLEX 8000 logic synthesis
option that controls the use of carry chain logic.
When this option is set to AUTO, it directs the
Compiler’s Logic Synthesizer module to insert
carry chain logic—i.e., insert CARRY buffers—
wherever it is useful. When defining a logic
synthesis style, designers can specify the
maximum allowable length of a chain of these
synthesized CARRY buffers. The AUTO setting does
not force the Logic Synthesizer to use carry logic
and has no effect on CARRY primitives that have
been entered in design files.
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When the Carry Chain option is set to IGNORE, it
directs the Logic Synthesizer to ignore CARRY
buffers that have been entered manually in design
files. When this option is set to MANUAL, the
Logic Synthesizer uses only the CARRY primitives
that have been manually entered in design files.

Cascade Chain option A FLEX 8000 logic synthesis
option that controls the use of cascade chain
logic. When this option is set to AUTO, it directs
the Compiler’s Logic Synthesizer module to insert
cascade logic—i.e., insert CASCADE buffers—
wherever it is useful. When defining a logic
synthesis style, designers can specify the
maximum allowable length of a chain of these
synthesized CASCADE buffers. The AUTO setting
does not force the Logic Synthesizer to use
cascade logic and has no effect on CASCADE
primitives that have been entered in design files.

When the Cascade Chain option is set to IGNORE,
it directs the Logic Synthesizer to ignore CASCADE
buffers that have been entered manually in design
files. When this option is set to MANUAL, the
Logic Synthesizer uses only the CASCADE
primitives that have been manually entered in
design files.

CerDIP Ceramic Dual In-Line Package. A device
package offered by Altera. See Altera Device
Package Outlines and Ordering Information in the
current data book for more information.

Classic An Altera device family based on Altera’s
original EPLD architecture. This EEPROM- and
EPROM-based family includes EP330, EP610,
EP910, and EP1810 devices.

Compiler Netlist Extractor The MAX+PLUS II
Compiler module that creates Compiler Netlist
Files (.cnf), Hierarchy Interconnect Files (.hif),
and Symbol Files (.sym) from the design files for
a project. This module includes built-in EDIF,
VHDL, and Xilinx Netlist Readers that convert
EDIF Netlist Files (.edf), VHDL Design Files
(.vhd), and Xilinx Netlist Format Files (.xnf)
created with industry-standard CAE software.

The Compiler Netlist Extractor also checks each
design file in a project for problems such as
duplicate node names, missing inputs and
outputs, and outputs that are tied together.

Configuration EPROM Altera’s family of serial
EPROMs, which are designed to configure
FLEX 8000 devices. This device family includes
the EPC1213 and EPC1064 devices.

configuration scheme The method used to load
data into a FLEX 8000 device. Six configuration
schemes are available:

Active Serial (AS)

Active Parallel Up (APU)

Active Parallel Down (APD)

Passive Parallel Asynchronous (PPA)
Passive Parallel Synchronous (PPS)
Passive Serial (PS)

For complete information on FLEX 8000
configuration schemes, see Application Brief 33
(Configuring FLEX 8000 Deuvices).

continuity checking A test for open circuits
between device pins and programming adapter
sockets. This test verifies that a device is properly
seated in the socket of the adapter.

COFP Ceramic Quad Flat Pack. A device package
offered by Altera. See Altera Device Package
Outlines and Ordering Information in the current
data book for more information.

Database Builder The MAX+PLUS II Compiler
module that builds a single, fully flattened
database that integrates all files in a project
hierarchy. It also examines the logical
completeness and consistency of the project and
checks for boundary connectivity and syntactical
errors.

dedicated input pin A pin that may only be used
as an input to the device.
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device An Altera programmable logic device,
including Classic, MAX 5000/ EPS464, MAX 7000,
FLEX 8000, EPS448, EPB2001, and Configuration
EPROM devices.

device family A group of Altera programmable
logic devices with the same fundamental
architecture. Altera device families are the Classic,
MAX 5000/EPS464, MAX 7000, FLEX 8000, and
Configuration EPROM families.

E

EDIF Electronic Design Interchange Format. An
industry-standard format for transmitting design
data. AN EDIF 200 or 29 O netlist file is generated
from a schematic design or a VHDL or Verilog
HDL design that has been processed with an
industry-standard synthesis tool. The netlist file
is then imported into MAX+PLUS II as an EDIF
Input File (.edf). The MAX+PLUS II Compiler
can generate one or more EDIF Output Files
(.edo) in EDIF 2 0 0 or 2 9 0 format that contain
functional or timing information for simulation
with a standard EDIF simulator.

EEPROM Electrically Erasable Programmable
Read-Only Memory. A form of reprogrammable
semiconductor memory in which the contents
(program) can be erased by subjecting the device
to appropriate electrical signals.

EPLD Erasable Programmable Logic Device, i.e.,
an Altera device that is a member of the Classic,
MAX 5000/EPS464, or MAX 7000 family.

EPROM Erasable Programmable Read-Only
Memory. A form of reprogrammable semi-
conductor memory in which the contents
(program) can be erased by subjecting the device
to ultraviolet light of the proper wavelength. See
Operating Requirements for Altera Devices and
Technology & Reliability in the current data book
for more information.

external timing parameters Factory-tested,
guaranteed worst-case values. Examples: tpp;,
tcor font- In FLEX 8000 device data sheets,

external timing parameters are listed under
“External Reference Timing Characteristics.”

F

family-specific macrofunction An Altera-provided
macrofunction that contains logic optimized for
the architecture of a specific device family. The
functionality of a family-specific macrofunction
is always the same, regardless of the device family
for which it is designed. However, the actual
primitives and nodes used within the
macrofunction file can vary from family to family
to take advantage of different device
architectures, thus providing higher performance
and more efficient implementation.

FastTrack Interconnect Dedicated connection
paths that span the entire width and height of a
FLEX 8000 device. These connection paths allow
signals to travel between all Logic Array Blocks
(LABs) in a device.

Fitter The MAX+PLUS II Compiler module that
fits a project into one or more devices. The Fitter
selects appropriate interconnection paths, and
pin and logic cell assignments. It also generates
part of the Report File (.rpt) and Fit File ( fit) for
the project.

FLEX Download Cable A cable used to download
SRAM Object File (.sof) data in a passive serial
(PS) configuration scheme to a FLEX 8000 device
in an in-system circuit. FLEX 8000 devices can be
configured with the FLEX Download Cable to
allow in-circuit testing and prototyping on the
circuit board.

FLEX 8000 An Altera device family based on
Flexible Logic Element MatriX architecture. This
SRAM-based family offers high-performance,
register-intensive, high-gate-count devices. The
family includes the EPF8282, EPF8282V, EPF8636,
EPF8452, EPF8820, EPF81188, and EPF81500
devices.

flipflop or register An edge-triggered, clocked
storage unit that stores a single bit of data. A
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low-to-high transition on the Clock signal changes
the output of the flipflop, based on the value of
the data input(s). This value is maintained until
the next low-to-high transition of the Clock, or
until the flipflop is preset or cleared. Depending
on the architecture of the device family, a register
can be programmed as a level-sensitive flow-
through latch or as an edge-triggered D,T, JK, or
SR flipflop.

functional simulation A MAX+PLUSII Simulator
mode that uses a functional Simulator Netlist
File (.snf) to simulate the logical performance of
a project (without timing information).

Functional SNF Extractor The MAX+PLUS II
Compiler module that creates the functional
Simulator Netlist File (.snf) required for
functional simulation.

G

global Clear A signal from a dedicated input pin
that does not pass through the logic array before
arriving at the Clear input of a register. In
FLEX 8000 devices, a global Clear can come from
any of the dedicated inputs. MAX 7000 devices
have input pins that can be used either as global
Clear sources or dedicated inputs to the device.

global Clock A signal from a dedicated input pin
that does not pass through the logic array before
arriving at the Clock input of a register. In
FLEX 8000 devices, a global Clock can come from
any of the four dedicated input pins. MAX 7000,
MAX 5000, EPS464, and EP1810 devices have
input pins that can be used either as global Clock
sources or dedicated inputs to the device. EP910,
EP610, and EP330 devices have dedicated Clock
input pins.

H

Hexadecimal (Intel-Format) File (.hex) A
hexadecimal file that supports the Active Parallel
Up (APU) and Active Parallel Down (APD)
configuration schemes for configuring FLEX 8000
devices.

interconnect timing parameters Internal timing
parameters for the interconnect in FLEX 8000
devices.

internal timing parameters Worst-case delays
based on external timing parameters. Internal
timing parameters cannot be measured explicitly,
and should be used only for estimating device
performance. Post-compilation timing simulation
or timing analysis is required to determine actual
worst-case performance. Examples: t;4p, tcgens
tcrr- In FLEX 8000 device data sheets, internal
timing parameters are listed under “Internal
Timing Characteristics.”

J

JEDEC File (.jed) An ASCII file that contains
programming information. JEDEC Files provide
an industry-standard format for transferring
information between a data preparation system
and a logic device programmer. The
MAX+PLUS II Programmer can optionally save
programming data in JEDEC File format and use
a JEDEC File to program the following Altera
devices: EP330, EP610, EP910, EP1810, EPM5016,
and EPM5032 devices.

The Programmer can also use JEDEC Files
generated by A+PLUS software to program
Classic devices.

JLCC Ceramic J-Lead Chip Carrier. A device
package offered by Altera. See Altera Device
Package Outlines and Ordering Information in the
current data book for more information.

JTAG Joint Test Action Group. A set of
specifications that enables board- and chip-level
functional verification of a board during
production.

JTAG boundary-scan testing Testing that isolates
a device’s internal circuitry from its I/O circuitry.
This testing is made possible by the Joint Test
Action Group (JTAG) Boundary-Scan Test (BST)

| Page 222

Altera Corporation |




Glossary J

architecture that is available in the FLEX 8000
EPF8282, EPF8282V, EPF8636, EPF8820, and
EPF81500 devices. Serial data is shifted into
boundary-scan cells in the device; observed data
is shifted out and externally compared to
expected results. Boundary-scan testing offers
efficient PC board testing, providing an electronic
substitute for the traditional “bed of nails” test
fixture.

L

library of parameterized modules (LPM) A
technology-independent library of logic
functions. Parameterized modules from the LPM
support architecture-independent design entry
for Altera Classic, MAX 5000/ EPS464, MAX 7000,
and FLEX 8000 devices. The MAX+PLUS 1I
Compiler’s EDIF Netlist Reader module includes
built-in compilation support for many
parameterized modules in the LPM.

linked simulation A MAX+PLUS II Simulator
mode that uses a linked Simulator Netlist File
(.snf) to simulate the logical performance of a
super-project consisting of multiple, linked
individual projects. A linked simulation uses the
timing and/ or functional netlist information from
the combined SNFs of the individual linked sub-
projects.

Linked SNF Extractor The MAX+PLUSII Compiler
module that creates the linked Simulator Netlist
File (.snf) required for multi-project simulation.

Logic Array Block (LAB) A physically grouped set
of logic resources in an Altera device. The LAB
consists of a logic cell array and, in some device
families, an expander product term array. Any
signal that is available to any one logic cell in the
LAB is available to the entire LAB. In Classic
devices, the logic in the LAB shares a global
Clock signal. The LAB is fed by a global bus and
a dedicated input bus. In MAX 5000 and
MAX 7000 devices, the LAB is fed by a
Programmable Interconnect Array (PIA) and a
dedicated input bus; in FLEX 8000 devices, the

LAB is fed by row interconnect paths and a
dedicated input bus.

logic cell The generic term for a basic building
block of an Altera general-purpose logic device.
In Classic, MAX 5000/EPS464, and MAX 7000
devices, the logic cell is called a macrocell. In
FLEX 8000 devices, the logic cell is called a logic
element.

logic element (LE) A basic building block of an
Altera FLEX 8000 device. A logic element (also
known as a logic cell) consists of a look-up table
(LUT)—i.e., a function generator that quickly
computes any function of four variables—and a
programmable flipflop to support sequential
functions. The register can be programmed as a
flow-through latch; a D, T, JK, or SR flipflop; or
bypassed entirely for pure combinatorial logic.
The register can feed other logic elements or feed
back to the logic cell itself. Some logic cells feed
output or bidirectional I/O pins on the device.

Logic elements have “numbers” of the format
LC<number>_<LAB name>, where <number>
ranges from 1 to 8 and <LAB name> consists of
the row letter and column number of the Logic
Array Block (LAB).

logic element timing parameters Internal timing
parameters for the logic elements in FLEX 8000
devices.

Logic Programmer card The LP4, LP5, or LP6
expansion card required to run the MAX+PLUS II
Programmer and program Altera devices.

Logic Synthesizer The Compiler module that uses
several algorithms to minimize gate count,
remove redundant logic, and utilize the device
architecture as efficiently as possible.

look-up table (LUT) A function that generates
outputs based on inputs and a set of stored data.
The logic element of FLEX 8000 devices includes
a four-input LUT that can be configured to
emulate any logical function of four inputs.
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Master Programming Unit (MPU) A logic device
programming box. The MPU works with zero-
insertion-force sockets and individual adapters
to program and test Altera devices. The PL-MPU
base unit and PLM-prefix adapters support both
device programming and device testing. The
PLE3-12 base unit as well as adapters with other
prefixes (e.g., PLE-prefix adapters and the
PLAD3-12 adapter) support device programming
only.

MAX 5000/EPS464 An Altera device family based
on the first generation of Multiple Array MatriX
architecture. This EPROM-based device family
includes EPM5016, EPM5032, EPM5064, EPS464,
EPM5128, EPM5128A, EPM5130, EPM5192, and
EPM5192A devices.

MAX 7000 An Altera device family based on the
second generation of Multiple Array MatriX
architecture. These EPROM- and EEPROM-based
devices include EPM7032, EPM7032V, EPM7064,
EPM7096, EPM7128, EPM7160, EPM7192, and
EPM7256 devices.

MAX 7000E An Altera device family based on the
enhanced second-generation Multiple Array
MatriX architecture. MAX 7000E devices are
function-, pin-, and programming-file-compatible
with MAX 7000 devices. These EEPROM-based
devices include EPM7192E and EPM7256E
devices.

MAX 7000E devices differ from MAX 7000
devices in that they offer up to six pin- or logic-
driven Output Enable signals, fast input setup
times to logic cells, and multiple global Clocks
with optional inversion.

MAX+PLUS Il Altera’s Multiple Array MatriX
Programmable Logic User System. MAX+PLUS II
is a set of computer programs and hardware
support products that allow design and
implementation of custom logic circuits with
Classic, MAX 5000/EPS464, MAX 7000, and
FLEX 8000 devices.

MPLD Mask-Programmed Logic Device, ie., a
custom Altera device created by converting a
design originally created for an EPLD or
FLEX 8000 device. Altera offers a program for
converting customer designs into MPLDs, which
are cost-effective alternatives for high-volume
production.

MQFP Metal Quad Flat Pack. A device package
offered by Altera. See Altera Device Package
Outlines and Ordering Information in the current
data book for more information.

P

Passive Parallel Asynchronous (PPA) A
configuration scheme in which an external
controller, e.g., a CPU, loads the design data into
a FLEX 8000 device via a common data bus. In
this scheme, the FLEX 8000 device accepts a
parallel byte of input data. Intelligent
handshaking between the external controller and
the FLEX 8000 device allows the external
controller to configure the device. MAX+PLUS I
can generate Tabular Text Files (.ttf) that contain
the data for configuring FLEX 8000 devices in a
PPA configuration scheme.

Passive Parallel Synchronous (PPS) A
configuration scheme in which an external
controller, e.g., a CPU, loads the design data into
a FLEX 8000 device via a common data bus. Data
is latched by the FLEX 8000 device on the first
rising edge of a CPU-driven Clock signal. The
next eight falling Clock edges serialize this latched
data within the FLEX 8000 device. The FLEX 8000
latches the next 8-bit byte of data on every eighth
rising edge of the Clock signal until the device is
completely configured. MAX+PLUS II can
generate Tabular Text Files (.ttf) that contain the
data for configuring FLEX 8000 devices in a PPS
configuration scheme.

Passive Serial (PS) A configuration scheme in
which an external controller passes configuration
data to a FLEX 8000 device via a bit-wide serial
data stream. The FLEX 8000 device is treated as a
slave device with a 5-wire interface to the external
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controller. The external controller can be an
intelligent host, such as a microcontroller or a
CPU, the BitBlaster, or the MAX+PLUS II
Programmer used together with the PL-MPU
Master Programming Unit, and appropriate
device adapter, and the FLEX Download Cable.
MAX+PLUS II can generate Tabular Text Files
(.ttf) that contain the data for sequential or bit-
slice PS configuration of multiple FLEX 8000
devices.

PDIP Plastic Dual In-Line Package. A device
package offered by Altera. See Altera Device
Package Outlines and Ordering Information in the
current data book for more information.

peripheral register A register that exists on the
periphery of a FLEX 8000 device or a fast input-
type logic cell that is associated with an I/O pin
in a MAX 7000E device. Peripheral Register is
also a logic option that specifies that you wish to
implement a register in a peripheral register on a
FLEX 8000 or MAX 7000E device. This logic
option can be applied only to individual logic
functions; it cannot be incorporated into a logic
synthesis style or applied to an entire project.

PGA Pin-Grid Array. A ceramic device package
offered by Altera. See Altera Device Package
Outlines and Ordering Information in the current
data book for more information.

PLAD3-12 An adapter that plugs into the PL-
MPU Master Programming Unit (MPU). It allows
the designer to use PLE-prefix adapters originally
designed for wuse with the PLE3-12A
programming unit. It also directly supports
programming of EP330 DIP devices.

PLCC Plastic J-Lead Chip Carrier. A device
package offered by Altera. See Altera Device
Package Outlines and Ordering Information in the
current data book for more information.

PQFP Plastic Quad Flat Pack. A device package
offered by Altera. See Altera Device Package
Outlines and Ordering Information in the current
data book for more information.

product term Two or more factors in a Boolean
expression combined with an AND operator
constitute a product term, where “product”
means “logic product.”

Programmer Object File (.pof) A binary file
generated by the Compiler’s Assembler module.
It contains the data used by the MAX+PLUS II
Programmer to program an Altera device.

programming file: A file containing data for
programming Altera devices. Both the
MAX+PLUS II Compiler and Programmer can
generate programming files. The following
programming file formats are available in
MAX+PLUS II:

Hexadecimal (Intel-Format) File (.hex)
JEDEC File (.jed)

Programmer Object File (.pof)

SRAM Object File (.sof)

Tabular Text File (.ttf)

POFs, SOFs, and JEDEC Files are used to program
devices with the MAX+PLUS Il Programmer. Hex
Files and TTFs are used to configure FLEX 8000
devices by other means. JEDEC Files generated
by A+PLUS software can also be used to program
Classic devices. The Programmer can save data
read from an examined device in POF or JEDEC
File format.

project A project consists of all files that are
associated with a particular design, including all
subdesign files and related ancillary files created
by the user or by MAX+PLUS II software. The
project name is the same as the name of the top-
level design file in the project. MAX+PLUS II
performs compilation, simulation, timing
analysis, and programming on only one project
at a time.

R

RQFP Power Quad Flat Pack. A device package
offered by Altera. See Altera Device Package
Outlines and Ordering Information in the current
data book for more information.
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S

Security Bit A bit that prevents an Altera device
from being interrogated or inadvertently
reprogrammed. It can be turned on or off for
each device in a project, or for the entire project.

software guard A device that attaches to the
parallel printer port on a computer. It is required
to run MAX+PLUS 1II software.

S0IC Small-Outline Integrated Circuit. A plastic
device package offered by Altera. See Altera Device
Package Outlines and Ordering Information in the
current data book for more information.

SRAM Static Read-Only Memory. A read-write
memory that stores data in integrated flipflops.
See Technology & Reliability in the current data
book for more information.

SRAM Object File (.sof) A binary file, generated
by MAX+PLUS II, that contains the data for
configuring an Altera FLEX 8000 device.

T

Tabular Text File (.ttf) An ASCII text file in tabular
format that supports the Passive Parallel
Synchronous (PPS) and Passive Parallel
Asynchronous (PPA) configuration schemes for
configuring FLEX 8000 devices.

timing simulation A MAX+PLUS II Simulator
mode that uses a timing Simulator Netlist File
(.snf) to simulate the logical and timing
performance of a project. Because the timing SNF
is generated after logic synthesis, partitioning,
and fitting are performed, only the nodes that
have not been removed by logic optimization are
simulated.

Timing SNF Extractor The Compiler module that
creates the timing Simulator Netlist File (.snf),
which contains the functional and timing data
for the fully optimized project. This file is used

for timing simulation and timing analysis. The
Compiler’s EDIF Netlist Writer module also uses
timing SNFs to generate EDIF Output Files (.edo).

TQFP Thin Quad Flat Pack. A device package
offered by Altera. See Altera Device Package
Outlines and Ordering Information in the current
data book for more information.

u

user 1/0 The total number of I/O pins and
dedicated inputs on a device.

v

Verilog HDL A hardware description language
from Cadence. You can generate an EDIF2 00 or
2 9 0 netlist file from a Verilog design that has
been processed with a Verilog synthesis tool,
then import the file into MAX+PLUS II as an
EDIF Input File (.edf). The MAX+PLUS II
Compiler can also generate a Verilog Output File
(.vo) that contains functional and timing
information for simulation with a standard
Verilog simulator.

VHDL Very High Speed Integrated Circuit
(VHSIC) Hardware Description Language. You
can create a VHDL Design File (.vhd) with the
MAX+PLUS II Text Editor or any standard text
editor and compile it directly with MAX+PLUS II.
You can also generate an EDIF2 00 or 2 9 0 netlist
file from a VHDL design that has been processed
with a VHDL synthesis tool, then import the file
into MAX+PLUS II as an EDIF Input File (.edf).
The MAX+PLUS II Compiler can also generate a
VHDL Output File (.vho) that contains functional
and timing information for simulation with a
standard VHDL simulator.

VHDL Design File (.vhd) An ASCII text file written
in the Very High Speed Integrated Circuit
(VHSIC) Hardware Description Language
(VHDL). VHDL Design Files can be compiled by
the MAX+PLUS II Compiler.
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A

ACCESS alliance 10
accumulators
general information 155, 161
ripple-carry 161
active parallel up & down (APU & APD)
configuration schemes. See configuration
(FLEX 8000 devices)
active serial (AS) configuration scheme. See
configuration (FLEX 8000 devices)
adders
carry-select 159
general information 155
pipelined 123
ripple-carry 120, 157
AHDL 118
Altera device architecture. See device
architecture
Altera Hardware Description Language
(AHDL) 118
APD configuration scheme. See configuration
(FLEX 8000 devices)
Applications Department, technical
support 11
APU configuration scheme. See configuration
(FLEX 8000 devices)
architecture. See device architecture
Arithmetic mode
FLEX 8000 logic element 22
full comparators 201
ripple-carry adders 157
AS configuration scheme. See configuration
(FLEX 8000 devices)
asynchronous load 121
asynchronous Preset 121
Auto-Restart Configuration on Frame Error
configuration option bit 39, 41, 58, 62, 79

barrel shifter 203

BBS 11

bidirectional pins 125

binary encoding 187

BitBlaster 52

board inductance 136

Booth’s algorithm multipliers 172,179

Boundary-Scan Description Language
(BSDL) 106

boundary-scan testing. See JTAG boundary-
scan testing

BSDL 106
bulletin board service (BBS) 11
buses

bus signals 197, 201
using pull-up & pull-down resistors 135
BYPASS instruction mode 104

c

capacitive loading 135
carry chain
accumulators 161
adders 157,159
Carry Chain logic option 119
carry-forward function 18
comparators 201
counters 143,141, 147
fitting guidelines 125
general description 21,118
parity generators 207
subtractors 165
carry look-ahead counters 120, 147, 149
carry-select adders 159
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cascade chain
Cascade Chain logic option 119
comparators 201
counters 148
equality comparators 197
fitting guidelines 125
general description 20, 21, 118
multiplexers 193
wide fan-in functions 20
Classic devices
compared to FLEX 8000 devices 118
development tools. See MAX+PLUS II
EP330 44
Clear signal
FLEX 80001/0 elements 29
FLEX 8000 logic elements 21, 23, 24, 26
global Clear 120
clearable counter mode (FLEX 8000 logic
element) 22
CLKUSR pin (FLEX 8000 devices) 60, 63
Clock signal
FLEX 8000I/0 elements 29
FLEX 8000 logic elements 21, 24
global 120
maintaining System Clock speeds 123
command mode (FLEX 8000 devices) 33
comparators
equality 197
full 201
Complex PLDs (CPLDs) 3,4
CONF_DONE pin (FLEX 8000 devices) 60, 63,
73
configuration (FLEX 8000 devices)
active parallel up & down (APU &
APD) 41,65
active serial (AS) 37,65
BitBlaster 52
configuration data sizes 35
configuration files 63, 67
configuration option bits 57
configuration pins 59
general description 16, 33,34, 71, 72
in-circuit reconfiguration 56, 68, 69
in-system configuration with FLEX
Download Cable 67
MSELOQ, MSEL1, and nSP selection bits 37,
60, 72

configuration (FLEX 8000 devices) (continued)

multi-device active parallel hybrid
(MD-APH) 87
multi-device active serial bit-slice
(MD-ASB) 76
multi-device passive parallel asynchronous
(MD-PPA) 84
multi-device passive parallel synchronous
(MD-PPS) 81
multi-device passive serial bit-slice
(MD-PSB) 79
multi-device sequential active serial
(MD-SAS) 74
passive parallel asynchronous (PPA) 47,
66
passive parallel synchronous (PPS) 45, 66
passive serial (PS) 51, 66
real-time reconfiguration 36
reliability 69
source of data 34
Configuration EPROM devices
configuring FLEX 8000 devices
EPC1064 16,
EPC1213 16,37,40,74
general description 16
programming 65, 66
control functions, register
counters
carry look-ahead 120, 147, 149
general information 139
pipelined carry look-ahead 149
prescaled 151
ripple-carry 120, 143, 141
ripple-carry Gray code 143
CRC circuitry 69
cross-talk 131,132
customer training 11
cyclic redundancy check (CRC) circuitry 69

D

37,40, 74

118, 120

dedicated configuration pins, JTAG boundary-
scan testing 95
dedicated input pins
FLEX 8000 devices 28
JTAG boundary-scan testing 95
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design entry. See MAX+PLUS II
design evaluations 12
design optimization 117
design processing. See MAX+PLUSII
device architecture
design guidelines 117
FLEX 8000 devices 16,117
general description 6,8
JTAG Boundary-Scan Test (BST) 92
MAX 7000 devices 7
device configuration. See configuration (FLEX
8000 devices)
Disable Start-Up Time-Out configuration option
bit 59, 63,79, 81, 84, 87,90
distributors, sales 210
dual-purpose configuration pins (FLEX 8000
devices) 60

E

electronic bulletin board service (BBS) 11

Enable DCLK Output in User Mode configuration
option bit 58, 61, 76, 90

Enable JTAG Support configuration option
bit 59

entry, design. See MAX+PLUS II

EPxxxx. See Classic devices

EPCxxxx. See Configuration EPROM devices

EPF8xxx. See FLEX 8000 devices

EPLDs. See Classic devices, MAX 5000
devices, MAX 7000 devices

EPM5xxx devices. See MAX 5000 devices

EPM7xxx devices. See MAX 7000 devices

EPS464 devices, compared to FLEX 8000
devices 118

equality comparators 197

Erasable Programmable Logic Devices
(EPLDs). See Classic devices, MAX 5000
devices, MAX 7000 devices

evaluations, design 12

EXTEST instruction mode 102

F

family-specific macrofunctions 119
fan-out 125

Fast logic synthesis style 119

FastTrack Interconnect
general description 25, 118
row and column interconnect 25
row-to-IOE connection interconnect 27
FLEX 8000 devices
architecture 16,117
configuration. See configuration
(FLEX 8000 devices)
configuration data size 35
design guidelines 119
EPF81188 35
EPF81500 35,40,74
EPF8282 35
EPF8282V 35
EPF8452 35
EPF8636 35
EPF8820 35
general description 15
reliability 69
FLEX Download Cable 36, 52, 67
flipflop control functions 118, 120
full comparators 201

G

global program length counter (FLEX 8000
devices) 38
global signals
FLEX 8000 24,28
usage 120
Gray code counters, ripple-carry 143
ground bounce, minimizing 132

H

Hexadecimal (Intel-Format) File (.hex) 63, 65,
67
high-volume production 8

I/0 element (IOE)
FLEX 8000 devices 17,29
JTAG boundary-scan testing 94
in-circuit reconfiguration (FLEX 8000
devices) 56, 68, 69
inductance 136

| Altera Corporation

Page 229




l Index

initialization (FLEX 8000 devices). See
configuration (FLEX 8000 devices)
instruction modes, JTAG boundary-scan testing
BYPASS 104
EXTEST 102
general description 98
SAMPLE/PRELOAD 100
interconnect structure
continuous 4
segmented 3

J

JTAG boundary-scan testing
architecture 92
Boundary-Scan Description Language

(BSDL) 106

boundary-scan order 107
boundary-scan register 93
dedicated configuration pins 95
dedicated input pins 95
enabling 105
FLEX 8000 device support 59
general description 32, 91
guidelines 106
I/0 elements 94
instruction modes 98, 100, 102, 104
operation control 98
Test Access Port (TAP) Controller 93, 98
waveforms 100, 102, 104, 105

L

L-Booth algorithm multipliers 172, 181
lead inductance, minimizing 136
load capacitance 135
Logic Array Block (LAB)
control signals 121
FLEX 8000 devices 16, 23,25
logic cell assignments 120, 125
logic cells. See logic elements (LEs)
logic circuit options 4

logic element (LE)
general description 16
operating modes 20
ripple-carry & carry look-ahead

usage 120

logic options 119

logic synthesis styles 119

look-up table (LUT) 16,118,197

macrofunctions, family-specific 119
Mask-Programmed Logic Devices (MPLDs) 8
MAX 5000 devices
compared to FLEX 8000 devices 118
development tools. See MAX+PLUS II
MAX 7000 devices
architecture 7
compared to FLEX 8000 devices 118
development tools. See MAX+PLUS II
EPM7032 76
MAX+PLUS I
CAE software support 10
design entry 9,118
design guidelines 120
design processing 9,117,119, 120, 125
design verification 9
device programming 9, 64, 66. See also
configuration (FLEX 8000 devices)
fitting guidelines 125
general description 5,8,9, 16
MD-xxx configuration circuits. See
configuration (FLEX 8000 devices)
modem access 11
modified ripple-carry multipliers
most significant bit (MSB) 201
MPLDs 8
MSELO & MSEL1 configuration scheme selection
bits 37, 60,72
multi-device configuration circuits. See
configuration (FLEX 8000 devices)
multiplexers
general description 193
in barrel shifters 205
pipelined 194

172,175,177
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multipliers
4-bit x 4-bit process 173
Booth’s algorithm 172, 179
design techniques 171
general description 171, 172
L-Booth algorithm 172, 181
modified ripple-carry 172,175,177
pipelined 183
ripple-carry 172,175

nCONFIG pin (FLEX 8000 devices) 60, 62,73
Normal logic synthesis style 119

normal mode (FLEX 8000 logic element) 22
nSP configuration scheme selection bit 37, 72
nSTATUS pin (FLEX 8000 devices) 60, 62, 73

0

one-hot encoding 123, 188
optimization, design 117
Output Enable signal, FLEX 8000 1/O
elements 29
output slew-rate 29
outputs
quiet 136
switching 135

P

parallel EPROM (FLEX 8000
configuration) 42, 65, 68, 76, 87

parallel expanders. See product terms

parallel termination circuits 130, 131

parity generators 207

passive parallel asynchronous & synchronous
(PPA & PPS) configuration schemes. See
configuration (FLEX 8000 devices)

passive serial (PS) configuration scheme. See
configuration (FLEX 8000 devices)

peripheral bus 30

peripheral control signals 31

pin assignments 120, 125

P
configuration (FLEX 8000 devices) 36, 59,

62
dedicated input. See dedicated input pins
pipelined functions
adders 123
barrel shifters 205
carry look-ahead counters 149
multiplexers 194
multipliers 183
PLDs. See Programmable Logic Devices
POR circuitry 40,70
power bus 127
power planes 128
power-on reset (POR) circuitry 40, 70
PPA & PPS configuration schemes. See
configuration (FLEX 8000 devices)
prescaled counters 151
Preset signal
FLEX 8000 logic elements 21,23, 24
programmable flipflop 121
printed circuit board (PCB) 127, 128, 129, 134,
136
processing, design. See MAX+PLUS II
program length counter (FLEX 8000
devices) 38
programmable logic devices 3,5. See also
Classic devices; Configuration EPROM
devices; EPS464 devices; FLEX 8000 devices;
MAX 5000 devices; MAX 7000 devices
programmable logic, introduction 3
Programmer Object File (.pof) 63, 65, 67
programming hardware
BitBlaster 52
FLEX Download Cable 36, 52, 67
PS configuration scheme. See configuration
(FLEX 8000 devices)

a

quiet outputs 136

Altera Corporation

Page 231




| Index

R

reconfiguration, real-time. See configuration
(FLEX 8000 devices)
register control functions 118, 120
relative dielectric constant 128, 129
Release Clears Before Tri-States configuration
option bit 58
reliability, configuration 69
representatives, sales 210
resistors
in bus applications 135
reducing ground bounce 136
using pull-up & pull-down resistors 135
resource assignments 120, 125
ripple-carry functions
accumulators 161
adders 120, 157
counters 120, 143, 141
Gray code counters 143
multipliers 172,175

S

sales offices, representatives &
distributors 209
SAMPLE /PRELOAD instruction mode 100
series termination circuit 131
slew rate 29,133
socket inductance 136
SRAM Object File (.sof) 63, 65, 67
state machines
binary encoding 187
one-hot encoding 123, 188
subtractors 155, 165
switching outputs 135
system Clock, maintaining speeds 123

T

Tabular Text File (.ttf) 63, 66, 67

TAP Controller 93,98

technical support 11,12

Test Access Port (TAP) Controller 93, 98

testing, JTAG boundary-scan. See JTAG
boundary-scan testing

training courses 11

ttf2rbf conversion utility 66

u

Up/Down Counter mode
FLEX 8000 logic element 22
ripple-carry counters 144, 141
user mode (FLEX 8000 devices) 33
User-Supplied Start-Up Clock configuration
option bit 58, 63

v

verification, design. See MAX+PLUS II
Verilog HDL 118
VHDL 118

W

waveforms, configuration
active parallel up & down (APU &
APD) 43
active serial (AS) 38
multi-device passive parallel asynchronous
(MD-PPA) 86
multi-device passive parallel synchronous
(MD-PPS) 83
multi-device passive serial bit-slice
(MD-PSB) 80
passive parallel asynchronous (PPA) 48,
50
passive parallel synchronous (PPS) 47
passive serial (PS) 55
waveforms, shift data register 102, 104, 105
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